File size: 2,204 Bytes
8ae7071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""
tree-segmentation
Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees.
"""
import os
import cv2
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import gradio as gr
import numpy as np
import torch
import torchvision
import detectron2

# import some common detectron2 utilities
import itertools
import seaborn as sns
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.checkpoint import DetectionCheckpointer

cfg = get_cfg()
cfg.merge_from_file("model_weights/treev1_cfg.yaml")
cfg.MODEL.DEVICE='cpu'
cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth"  
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2

def segment_image(im):

    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25
    predictor = DefaultPredictor(cfg)
    im = np.array(im)
    outputs = predictor(im)
    v = Visualizer(im[:, :, ::-1],
                   scale=0.5,
                   instance_mode=ColorMode.SEGMENTATION
    )
    print(len(outputs["instances"])," trees detected.")
    out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
    
    return Image.fromarray(out.get_image()[:, :, ::-1])

# gradio components 
"""
gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7,
                                        label='Set confidence threshold % for masks')
"""
# gradio outputs
inputs = gr.inputs.Image(type="pil", label="Input Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")

title = "Tree Segmentation"
description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone"

# Create user interface and launch
gr.Interface(segment_image, 
                inputs = inputs,
                outputs = outputs,
                 title = title,
                description = description).launch(debug=True)