File size: 20,673 Bytes
1ce95c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c356dff
1ce95c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c356dff
1ce95c4
 
 
c356dff
1ce95c4
 
526c490
1ce95c4
 
 
 
 
 
 
 
 
c356dff
 
 
 
 
 
 
 
1ce95c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# -*- coding: utf-8 -*-
"""
To run:
- activate the virtual environment
- streamlit run path\to\streamlit_app.py
"""
import logging
import os
import re
import sys
import time
import warnings
import shutil

from langchain.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
import openai
import pandas as pd
import streamlit as st
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, ColumnsAutoSizeMode
from streamlit_chat import message

from streamlit_langchain_chat.constants import *
from streamlit_langchain_chat.customized_langchain.llms import OpenAI, AzureOpenAI, AzureOpenAIChat
from streamlit_langchain_chat.dataset import Dataset

# Configure logger
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

warnings.filterwarnings('ignore')

if 'generated' not in st.session_state:
    st.session_state['generated'] = []
if 'past' not in st.session_state:
    st.session_state['past'] = []
if 'costs' not in st.session_state:
    st.session_state['costs'] = []
if 'contexts' not in st.session_state:
    st.session_state['contexts'] = []
if 'chunks' not in st.session_state:
    st.session_state['chunks'] = []
if 'user_input' not in st.session_state:
    st.session_state['user_input'] = ""
if 'dataset' not in st.session_state:
    st.session_state['dataset'] = None


def check_api_keys() -> bool:
    source_id = app.params['source_id']
    index_id = app.params['index_id']

    open_api_key = os.getenv('OPENAI_API_KEY', '')
    openapi_api_key_ready = type(open_api_key) is str and len(open_api_key) > 0

    pinecone_api_key = os.getenv('PINECONE_API_KEY', '')
    pinecone_api_key_ready = type(pinecone_api_key) is str and len(pinecone_api_key) > 0 if index_id == 2 else True

    is_ready = True if openapi_api_key_ready and pinecone_api_key_ready else False
    return is_ready


def check_combination_point() -> bool:
    type_id = app.params['type_id']
    open_api_key = os.getenv('OPENAI_API_KEY', '')
    openapi_api_key_ready = type(open_api_key) is str and len(open_api_key) > 0
    api_base = app.params['api_base']

    if type_id == 1:
        deployment_id = app.params['deployment_id']
        return True if openapi_api_key_ready and api_base and deployment_id else False
    elif type_id == 2:
        return True if openapi_api_key_ready and api_base else False
    else:
        return False


def check_index() -> bool:
    dataset = st.session_state['dataset']

    index_built = dataset.index_docstore if hasattr(dataset, "index_docstore") else False
    without_source = app.params['source_id'] == 4
    is_ready = True if index_built or without_source else False
    return is_ready


def check_index_point() -> bool:
    index_id = app.params['index_id']

    pinecone_api_key = os.getenv('PINECONE_API_KEY', '')
    pinecone_api_key_ready = type(pinecone_api_key) is str and len(pinecone_api_key) > 0 if index_id == 2 else True
    pinecone_environment = os.getenv('PINECONE_ENVIRONMENT', False) if index_id == 2 else True

    is_ready = True if index_id and pinecone_api_key_ready and pinecone_environment else False
    return is_ready


def check_params_point() -> bool:
    max_sources = app.params['max_sources']
    temperature = app.params['temperature']

    is_ready = True if max_sources and isinstance(temperature, float) else False
    return is_ready


def check_source_point() -> bool:
    return True


def clear_chat_history():
    if st.session_state['past'] or st.session_state['generated'] or st.session_state['contexts'] or st.session_state['chunks'] or st.session_state['costs']:
        st.session_state['past'] = []
        st.session_state['generated'] = []
        st.session_state['contexts'] = []
        st.session_state['chunks'] = []
        st.session_state['costs'] = []


def clear_index():
    if dataset := st.session_state['dataset']:
        # delete directory (with files)
        index_path = dataset.index_path
        if index_path.exists():
            shutil.rmtree(str(index_path))

        # update variable
        st.session_state['dataset'] = None

    elif (TEMP_DIR / "default").exists():
        shutil.rmtree(str(TEMP_DIR / "default"))


def check_sources() -> bool:
    uploaded_files_rows = app.params['uploaded_files_rows']
    urls_df = app.params['urls_df']
    source_id = app.params['source_id']

    some_files = True if uploaded_files_rows and uploaded_files_rows[-1].get('filepath') != "" else False
    some_urls = bool([True for url, citation in urls_df.to_numpy() if url])

    only_local_files = some_files and not some_urls
    only_urls = not some_files and some_urls
    is_ready = only_local_files or only_urls or (source_id == 4)
    return is_ready


def collect_dataset_and_built_index():
    start = time.time()
    uploaded_files_rows = app.params['uploaded_files_rows']
    urls_df = app.params['urls_df']
    type_id = app.params['type_id']
    temperature = app.params['temperature']
    index_id = app.params['index_id']
    api_base = app.params['api_base']
    deployment_id = app.params['deployment_id']

    some_files = True if uploaded_files_rows and uploaded_files_rows[-1].get('filepath') != "" else False
    some_urls = bool([True for url, citation in urls_df.to_numpy() if url])

    openai.api_type = "azure" if type_id == 1 else "open_ai"
    openai.api_base = api_base
    openai.api_version = "2023-03-15-preview" if type_id == 1 else None

    if deployment_id != "text-davinci-003":
        dataset = Dataset(
            llm=ChatOpenAI(
                temperature=temperature,
                max_tokens=512,
                deployment_id=deployment_id,
            )
        )
    else:
        dataset = Dataset(
            llm=OpenAI(
                temperature=temperature,
                max_tokens=512,
                deployment_id=COMBINATIONS_OPTIONS.get(combination_id).get('deployment_name'),
            )
        )

    # get url documents
    if some_urls:
        urls_df = urls_df.reset_index()
        for url_index, url_row in urls_df.iterrows():
            url = url_row.get('urls', '')
            citation = url_row.get('citation string', '')
            if url:
                try:
                    dataset.add(
                        url,
                        citation,
                        citation,
                        disable_check=True  # True to accept Japanese letters
                    )
                except Exception as e:
                    print(e)
                    pass

    # dataset is pandas dataframe
    if some_files:
        for uploaded_files_row in uploaded_files_rows:
            key = uploaded_files_row.get('citation string') if ',' not in uploaded_files_row.get('citation string') else None
            dataset.add(
                uploaded_files_row.get('filepath'),
                uploaded_files_row.get('citation string'),
                key=key,
                disable_check=True  # True to accept Japanese letters
            )

    openai_embeddings = OpenAIEmbeddings(
        document_model_name="text-embedding-ada-002",
        query_model_name="text-embedding-ada-002",
    )
    if index_id == 1:
        dataset._build_faiss_index(openai_embeddings)
    else:
        dataset._build_pinecone_index(openai_embeddings)
    st.session_state['dataset'] = dataset

    if OPERATING_MODE == "debug":
        print(f"time to collect dataset: {time.time() - start:.2f} [s]")


def configure_streamlit_and_page():
    # Configure Streamlit page and state
    st.set_page_config(**ST_CONFIG)

    # Force responsive layout for columns also on mobile
    st.write(
        """<style>
        [data-testid="column"] {
            width: calc(50% - 1rem);
            flex: 1 1 calc(50% - 1rem);
            min-width: calc(50% - 1rem);
        }
        </style>""",
        unsafe_allow_html=True,
    )


def get_answer():
    query = st.session_state['user_input']
    dataset = st.session_state['dataset']
    type_id = app.params['type_id']
    index_id = app.params['index_id']
    max_sources = app.params['max_sources']

    if query and dataset and type_id and index_id:
        chat_history = [(past, generated)
                        for (past, generated) in zip(st.session_state['past'], st.session_state['generated'])]
        marginal_relevance = False if not index_id == 1 else True
        start = time.time()
        openai_embeddings = OpenAIEmbeddings(
            document_model_name="text-embedding-ada-002",
            query_model_name="text-embedding-ada-002",
        )
        result = dataset.query(
            query,
            openai_embeddings,
            chat_history,
            marginal_relevance=marginal_relevance,  # if pinecone is used it must be False
        )
        if OPERATING_MODE == "debug":
            print(f"time to get answer: {time.time() - start:.2f} [s]")
            print("-" * 10)
        # response = {'generated_text': result.formatted_answer}
        # response = {'generated_text': f"test_{len(st.session_state['generated'])} by {query}"}  # @debug
        return result
    else:
        return None


def load_main_page():
    """
    Load the body of web.
    """
    # Streamlit	    HTML	Markdown
    # st.title	    <h1>	#
    # st.header	    <h2>	##
    # st.subheader	<h3>	###
    st.markdown(f"## Augmented-Retrieval Q&A ChatGPT ({APP_VERSION})")
    validate_status()
    st.markdown(f"#### **Status**: {app.params['status']}")

    # hidden div with anchor
    st.markdown("<div id='linkto_top'></div>", unsafe_allow_html=True)
    col1, col2, col3 = st.columns(3)
    col1.button(label="clear index", type="primary", on_click=clear_index)
    col2.button(label="clear conversation", type="primary", on_click=clear_chat_history)
    col3.markdown("<a href='#linkto_bottom'>Link to bottom</a>", unsafe_allow_html=True)

    if st.session_state["generated"]:
        for i in range(len(st.session_state["generated"])):
            message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
            message(st.session_state['generated'][i], key=str(i))
            with st.expander("See context"):
                st.write(st.session_state['contexts'][i])
            with st.expander("See chunks"):
                st.write(st.session_state['chunks'][i])
            with st.expander("See costs"):
                st.write(st.session_state['costs'][i])
    dataset = st.session_state['dataset']
    index_built = dataset.index_docstore if hasattr(dataset, "index_docstore") else False
    without_source = app.params['source_id'] == 4
    enable_chat_button = index_built or without_source
    st.text_input("You:",
                  key='user_input',
                  on_change=on_enter,
                  disabled=not enable_chat_button
                  )

    st.markdown("<a href='#linkto_top'>Link to top</a>", unsafe_allow_html=True)
    # hidden div with anchor
    st.markdown("<div id='linkto_bottom'></div>", unsafe_allow_html=True)


def load_sidebar_page():
    st.sidebar.markdown("## Instructions")

    # ############ #
    # SOURCES TYPE #
    # ############ #
    st.sidebar.markdown("1. Select a source:")
    source_selected = st.sidebar.selectbox(
        "Choose the location of your info to give context to chatgpt",
        [key for key, value in SOURCES_IDS.items()])
    app.params['source_id'] = SOURCES_IDS.get(source_selected, None)

    # ##### #
    # MODEL #
    # ##### #
    st.sidebar.markdown("2. Select a model (LLM):")
    combination_selected = st.sidebar.selectbox(
        "Choose type: MSF Azure OpenAI and model / OpenAI",
        [key for key, value in TYPE_IDS.items()])
    app.params['type_id'] = TYPE_IDS.get(combination_selected, None)

    if app.params['type_id'] == 1:  # with AzureOpenAI endpoint
        # https://docs.streamlit.io/library/api-reference/widgets/st.text_input
        os.environ['OPENAI_API_KEY'] = st.sidebar.text_input(
            label="Enter Azure OpenAI API Key",
            type="password"
        ).strip()
        app.params['api_base'] = st.sidebar.text_input(
            label="Enter Azure API base",
            placeholder="https://<api_base_endpoint>.openai.azure.com/",
        ).strip()
        app.params['deployment_id'] = st.sidebar.text_input(
            label="Enter Azure deployment_id",
        ).strip()
    elif app.params['type_id'] == 2:  # with OpenAI endpoint
        os.environ['OPENAI_API_KEY'] = st.sidebar.text_input(
            label="Enter OpenAI API Key",
            placeholder="sk-...",
            type="password"
        ).strip()
        app.params['api_base'] = "https://api.openai.com/v1"
        app.params['deployment_id'] = None

    # ####### #
    # INDEXES #
    # ####### #
    st.sidebar.markdown("3. Select a index store:")
    index_selected = st.sidebar.selectbox(
        "Type of Index",
        [key for key, value in INDEX_IDS.items()])
    app.params['index_id'] = INDEX_IDS.get(index_selected, None)
    if app.params['index_id'] == 2:  # with pinecone
        os.environ['PINECONE_API_KEY'] = st.sidebar.text_input(
            label="Enter pinecone API Key",
            type="password"
        ).strip()

        os.environ['PINECONE_ENVIRONMENT'] = st.sidebar.text_input(
            label="Enter pinecone environment",
            placeholder="eu-west1-gcp",
        ).strip()

    # ############## #
    # CONFIGURATIONS #
    # ############## #
    st.sidebar.markdown("4. Choose configuration:")
    # https://docs.streamlit.io/library/api-reference/widgets/st.number_input
    max_sources = st.sidebar.number_input(
        label="Top-k: Number of chunks/sections (1-5)",
        step=1,
        format="%d",
        value=5
    )
    app.params['max_sources'] = max_sources
    temperature = st.sidebar.number_input(
        label="Temperature (0.0 – 1.0)",
        step=0.1,
        format="%f",
        value=0.0,
        min_value=0.0,
        max_value=1.0
    )
    app.params['temperature'] = round(temperature, 1)

    # ############## #
    # UPLOAD SOURCES #
    # ############## #
    app.params['uploaded_files_rows'] = []
    if app.params['source_id'] == 1:
        # https://docs.streamlit.io/library/api-reference/widgets/st.file_uploader
        # https://towardsdatascience.com/make-dataframes-interactive-in-streamlit-c3d0c4f84ccb
        st.sidebar.markdown("""5. Upload your local documents and modify citation strings (optional)""")
        uploaded_files = st.sidebar.file_uploader(
            "Choose files",
            accept_multiple_files=True,
            type=['pdf', 'PDF',
                  'txt', 'TXT',
                  'html',
                  'docx', 'DOCX',
                  'pptx', 'PPTX',
                  ],
        )
        uploaded_files_dataset = request_pathname(uploaded_files)
        uploaded_files_df = pd.DataFrame(
            uploaded_files_dataset,
            columns=['filepath', 'citation string'])
        uploaded_files_grid_options_builder = GridOptionsBuilder.from_dataframe(uploaded_files_df)
        uploaded_files_grid_options_builder.configure_selection(
            selection_mode='multiple',
            pre_selected_rows=list(range(uploaded_files_df.shape[0])) if uploaded_files_df.iloc[-1, 0] != "" else [],
            use_checkbox=True,
        )
        uploaded_files_grid_options_builder.configure_column("citation string", editable=True)
        uploaded_files_grid_options_builder.configure_auto_height()
        uploaded_files_grid_options = uploaded_files_grid_options_builder.build()
        with st.sidebar:
            uploaded_files_ag_grid = AgGrid(
                uploaded_files_df,
                gridOptions=uploaded_files_grid_options,
                update_mode=GridUpdateMode.SELECTION_CHANGED | GridUpdateMode.VALUE_CHANGED,
            )
        app.params['uploaded_files_rows'] = uploaded_files_ag_grid["selected_rows"]

    app.params['urls_df'] = pd.DataFrame()
    if app.params['source_id'] == 3:
        st.sidebar.markdown("""5. Write some urls and modify citation strings if you want (to look prettier)""")
        # option 1: with streamlit version 1.20.0+
        # app.params['urls_df'] = st.sidebar.experimental_data_editor(
        #     pd.DataFrame([["", ""]], columns=['urls', 'citation string']),
        #     use_container_width=True,
        #     num_rows="dynamic",
        # )

        # option 2: with streamlit version 1.19.0
        urls_dataset = [["", ""],
                        ["", ""],
                        ["", ""],
                        ["", ""],
                        ["", ""]]
        urls_df = pd.DataFrame(
            urls_dataset,
            columns=['urls', 'citation string'])

        urls_grid_options_builder = GridOptionsBuilder.from_dataframe(urls_df)
        urls_grid_options_builder.configure_columns(['urls', 'citation string'], editable=True)
        urls_grid_options_builder.configure_auto_height()
        urls_grid_options = urls_grid_options_builder.build()
        with st.sidebar:
            urls_ag_grid = AgGrid(
                urls_df,
                gridOptions=urls_grid_options,
                update_mode=GridUpdateMode.SELECTION_CHANGED | GridUpdateMode.VALUE_CHANGED,
            )
        df = urls_ag_grid.data
        df = df[df.urls != ""]
        app.params['urls_df'] = df

    if app.params['source_id'] in (1, 2, 3):
        st.sidebar.markdown("""6. Build an index where you can ask""")
        api_keys_ready = check_api_keys()
        source_ready = check_sources()
        enable_index_button = api_keys_ready and source_ready
        if st.sidebar.button("Build index", disabled=not enable_index_button):
            collect_dataset_and_built_index()


def main():
    configure_streamlit_and_page()
    load_sidebar_page()
    load_main_page()


def on_enter():
    output = get_answer()
    if output:
        st.session_state.past.append(st.session_state['user_input'])
        st.session_state.generated.append(output.answer)
        st.session_state.contexts.append(output.context)
        st.session_state.chunks.append(output.chunks)
        st.session_state.costs.append(output.cost_str)
        st.session_state['user_input'] = ""


def request_pathname(files):
    if not files:
        return [["", ""]]

    # check if temporal directory exist, if not create it
    if not Path.exists(TEMP_DIR):
        TEMP_DIR.mkdir(
            parents=True,
            exist_ok=True,
        )

    file_paths = []
    for file in files:
        # # absolut path
        # file_path = str(TEMP_DIR / file.name)
        # relative path
        file_path = str((TEMP_DIR / file.name).relative_to(ROOT_DIR))
        file_paths.append(file_path)
        with open(file_path, "wb") as f:
            f.write(file.getbuffer())
    return [[filepath, filename.name] for filepath, filename in zip(file_paths, files)]


def validate_status():
    source_point_ready = check_source_point()
    combination_point_ready = check_combination_point()
    index_point_ready = check_index_point()
    params_point_ready = check_params_point()
    sources_ready = check_sources()
    index_ready = check_index()

    if source_point_ready and combination_point_ready and index_point_ready and params_point_ready and sources_ready and index_ready:
        app.params['status'] = "✨Ready✨"
    elif not source_point_ready:
        app.params['status'] = "⚠️Review step 1 on the sidebar."
    elif not combination_point_ready:
        app.params['status'] = "⚠️Review step 2 on the sidebar. API Keys or endpoint, ..."
    elif not index_point_ready:
        app.params['status'] = "⚠️Review step 3 on the sidebar. Index API Key or environment."
    elif not params_point_ready:
        app.params['status'] = "⚠️Review step 4 on the sidebar"
    elif not sources_ready:
        app.params['status'] = "⚠️Review step 5 on the sidebar. Waiting for some source..."
    elif not index_ready:
        app.params['status'] = "⚠️Review step 6 on the sidebar. Waiting for press button to create index ..."
    else:
        app.params['status'] = "⚠️Something is not ready..."


class StreamlitLangchainChatApp():
    def __init__(self) -> None:
        """Use __init__ to define instance variables. It cannot have any arguments."""
        self.params = dict()

    def run(self, **state) -> None:
        """Define here all logic required by your application."""
        main()


if __name__ == "__main__":
    app = StreamlitLangchainChatApp()
    app.run()