Spaces:
Runtime error
Runtime error
File size: 29,089 Bytes
1ce95c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
import time
from dataclasses import dataclass
from datetime import datetime
from functools import reduce
import json
import os
from pathlib import Path
import re
import requests
from requests.models import MissingSchema
import sys
from typing import List, Optional, Tuple, Dict, Callable, Any
from bs4 import BeautifulSoup
import docx
from html2text import html2text
import langchain
from langchain.callbacks import get_openai_callback
from langchain.cache import SQLiteCache
from langchain.chains import LLMChain
from langchain.chains.chat_vector_db.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chat_models import ChatOpenAI
from langchain.chat_models.base import BaseChatModel
from langchain.document_loaders import PyPDFLoader, PyMuPDFLoader
from langchain.embeddings.base import Embeddings
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.llms.base import LLM, BaseLLM
from langchain.prompts.chat import AIMessagePromptTemplate
from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import Pinecone as OriginalPinecone
import numpy as np
import openai
import pinecone
from pptx import Presentation
from pypdf import PdfReader
import trafilatura
from streamlit_langchain_chat.constants import *
from streamlit_langchain_chat.customized_langchain.vectorstores import FAISS
from streamlit_langchain_chat.customized_langchain.vectorstores import Pinecone
from streamlit_langchain_chat.utils import maybe_is_text, maybe_is_truncated
from streamlit_langchain_chat.prompts import *
if REUSE_ANSWERS:
CACHE_PATH = TEMP_DIR / "llm_cache.db"
os.makedirs(os.path.dirname(CACHE_PATH), exist_ok=True)
langchain.llm_cache = SQLiteCache(str(CACHE_PATH))
# option 1
TextSplitter = TokenTextSplitter
# option 2
# TextSplitter = RecursiveCharacterTextSplitter # usado por gpt4_pdf_chatbot_langchain (aka GPCL)
@dataclass
class Answer:
"""A class to hold the answer to a question."""
question: str = ""
answer: str = ""
context: str = ""
chunks: str = ""
packages: List[Any] = None
references: str = ""
cost_str: str = ""
passages: Dict[str, str] = None
tokens: List[Dict] = None
def __post_init__(self):
"""Initialize the answer."""
if self.packages is None:
self.packages = []
if self.passages is None:
self.passages = {}
def __str__(self) -> str:
"""Return the answer as a string."""
return self.answer
def parse_docx(path, citation, key, chunk_chars=2000, overlap=50):
try:
document = docx.Document(path)
fullText = []
for paragraph in document.paragraphs:
fullText.append(paragraph.text)
doc = '\n'.join(fullText) + '\n'
except Exception as e:
print(f"code_error: {e}")
sys.exit(1)
if doc:
text_splitter = TextSplitter(chunk_size=chunk_chars, chunk_overlap=overlap)
texts = text_splitter.split_text(doc)
return texts, [dict(citation=citation, dockey=key, key=key)] * len(texts)
else:
return [], []
# TODO: si pones un conector con el formato loader = ... ; data = loader.load();
# podrás poner todos los conectores de langchain
# https://langchain.readthedocs.io/en/stable/modules/document_loaders/examples/pdf.html
def parse_pdf(path, citation, key, chunk_chars=2000, overlap=50):
pdfFileObj = open(path, "rb")
pdfReader = PdfReader(pdfFileObj)
splits = []
split = ""
pages = []
metadatas = []
for i, page in enumerate(pdfReader.pages):
split += page.extract_text()
pages.append(str(i + 1))
# split could be so long it needs to be split
# into multiple chunks. Or it could be so short
# that it needs to be combined with the next chunk.
while len(split) > chunk_chars:
splits.append(split[:chunk_chars])
# pretty formatting of pages (e.g. 1-3, 4, 5-7)
pg = "-".join([pages[0], pages[-1]])
metadatas.append(
dict(
citation=citation,
dockey=key,
key=f"{key} pages {pg}",
)
)
split = split[chunk_chars - overlap:]
pages = [str(i + 1)]
if len(split) > overlap:
splits.append(split[:chunk_chars])
pg = "-".join([pages[0], pages[-1]])
metadatas.append(
dict(
citation=citation,
dockey=key,
key=f"{key} pages {pg}",
)
)
pdfFileObj.close()
# # ### option 2. PyPDFLoader
# loader = PyPDFLoader(path)
# data = loader.load_and_split()
# # ### option 2.1. PyPDFLoader usado por GPCL, aunque luego usa el
# loader = PyPDFLoader(path)
# rawDocs = loader.load()
# text_splitter = TextSplitter(chunk_size=chunk_chars, chunk_overlap=overlap)
# texts = text_splitter.split_documents(rawDocs)
# # ### option 3. PDFMiner. Este parece la mejor opcion
# loader = PyMuPDFLoader(path)
# data = loader.load()
return splits, metadatas
def parse_pptx(path, citation, key, chunk_chars=2000, overlap=50):
try:
presentation = Presentation(path)
fullText = []
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
fullText.append(shape.text)
doc = ''.join(fullText)
if doc:
text_splitter = TextSplitter(chunk_size=chunk_chars, chunk_overlap=overlap)
texts = text_splitter.split_text(doc)
return texts, [dict(citation=citation, dockey=key, key=key)] * len(texts)
else:
return [], []
except Exception as e:
print(f"code_error: {e}")
sys.exit(1)
def parse_txt(path, citation, key, chunk_chars=2000, overlap=50, html=False):
try:
with open(path) as f:
doc = f.read()
except UnicodeDecodeError as e:
with open(path, encoding="utf-8", errors="ignore") as f:
doc = f.read()
if html:
doc = html2text(doc)
# yo, no idea why but the texts are not split correctly
text_splitter = TextSplitter(chunk_size=chunk_chars, chunk_overlap=overlap)
texts = text_splitter.split_text(doc)
return texts, [dict(citation=citation, dockey=key, key=key)] * len(texts)
def parse_url(url: str, citation, key, chunk_chars=2000, overlap=50):
def beautifulsoup_extract_text_fallback(response_content):
"""
This is a fallback function, so that we can always return a value for text content.
Even for when both Trafilatura and BeautifulSoup are unable to extract the text from a
single URL.
"""
# Create the beautifulsoup object:
soup = BeautifulSoup(response_content, 'html.parser')
# Finding the text:
text = soup.find_all(text=True)
# Remove unwanted tag elements:
cleaned_text = ''
blacklist = [
'[document]',
'noscript',
'header',
'html',
'meta',
'head',
'input',
'script',
'style', ]
# Then we will loop over every item in the extract text and make sure that the beautifulsoup4 tag
# is NOT in the blacklist
for item in text:
if item.parent.name not in blacklist:
cleaned_text += f'{item} ' # cleaned_text += '{} '.format(item)
# Remove any tab separation and strip the text:
cleaned_text = cleaned_text.replace('\t', '')
return cleaned_text.strip()
def extract_text_from_single_web_page(url):
print(f"\n===========\n{url=}\n===========\n")
downloaded_url = trafilatura.fetch_url(url)
a = None
try:
a = trafilatura.extract(downloaded_url,
output_format='json',
with_metadata=True,
include_comments=False,
date_extraction_params={'extensive_search': True,
'original_date': True})
except AttributeError:
a = trafilatura.extract(downloaded_url,
output_format='json',
with_metadata=True,
date_extraction_params={'extensive_search': True,
'original_date': True})
except Exception as e:
print(f"code_error: {e}")
if a:
json_output = json.loads(a)
return json_output['text']
else:
try:
headers = {'User-Agent': 'Chrome/83.0.4103.106'}
resp = requests.get(url, headers=headers)
print(f"{resp=}\n")
# We will only extract the text from successful requests:
if resp.status_code == 200:
return beautifulsoup_extract_text_fallback(resp.content)
else:
# This line will handle for any failures in both the Trafilature and BeautifulSoup4 functions:
return np.nan
# Handling for any URLs that don't have the correct protocol
except MissingSchema:
return np.nan
text_to_split = extract_text_from_single_web_page(url)
text_splitter = TextSplitter(chunk_size=chunk_chars, chunk_overlap=overlap)
texts = text_splitter.split_text(text_to_split)
return texts, [dict(citation=citation, dockey=key, key=key)] * len(texts)
def read_source(path: str = None,
citation: str = None,
key: str = None,
chunk_chars: int = 3000,
overlap: int = 100,
disable_check: bool = False):
if path.endswith(".pdf"):
return parse_pdf(path, citation, key, chunk_chars, overlap)
elif path.endswith(".txt"):
return parse_txt(path, citation, key, chunk_chars, overlap)
elif path.endswith(".html"):
return parse_txt(path, citation, key, chunk_chars, overlap, html=True)
elif path.endswith(".docx"):
return parse_docx(path, citation, key, chunk_chars, overlap)
elif path.endswith(".pptx"):
return parse_pptx(path, citation, key, chunk_chars, overlap)
elif path.startswith("http://") or path.startswith("https://"):
return parse_url(path, citation, key, chunk_chars, overlap)
# TODO: poner mas conectores
# else:
# return parse_code_txt(path, citation, key, chunk_chars, overlap)
else:
raise "unknown extension"
class Dataset:
"""A collection of documents to be used for answering questions."""
def __init__(
self,
chunk_size_limit: int = 3000,
llm: Optional[BaseLLM] | Optional[BaseChatModel] = None,
summary_llm: Optional[BaseLLM] = None,
name: str = "default",
index_path: Optional[Path] = None,
) -> None:
"""Initialize the collection of documents.
Args:
chunk_size_limit: The maximum number of characters to use for a single chunk of text.
llm: The language model to use for answering questions. Default - OpenAI chat-gpt-turbo
summary_llm: The language model to use for summarizing documents. If None, llm is used.
name: The name of the collection.
index_path: The path to the index file IF pickled. If None, defaults to using name in $HOME/.paperqa/name
"""
self.docs = dict()
self.keys = set()
self.chunk_size_limit = chunk_size_limit
self.index_docstore = None
if llm is None:
llm = ChatOpenAI(temperature=0.1, max_tokens=512)
if summary_llm is None:
summary_llm = llm
self.update_llm(llm, summary_llm)
if index_path is None:
index_path = TEMP_DIR / name
self.index_path = index_path
self.name = name
def update_llm(self, llm: BaseLLM | ChatOpenAI, summary_llm: Optional[BaseLLM] = None) -> None:
"""Update the LLM for answering questions."""
self.llm = llm
if summary_llm is None:
summary_llm = llm
self.summary_llm = summary_llm
self.summary_chain = LLMChain(prompt=chat_summary_prompt, llm=summary_llm)
self.search_chain = LLMChain(prompt=search_prompt, llm=llm)
self.cite_chain = LLMChain(prompt=citation_prompt, llm=llm)
def add(
self,
path: str,
citation: Optional[str] = None,
key: Optional[str] = None,
disable_check: bool = False,
chunk_chars: Optional[int] = 3000,
) -> None:
"""Add a document to the collection."""
if path in self.docs:
print(f"Document {path} already in collection.")
return None
if citation is None:
# peak first chunk
texts, _ = read_source(path, "", "", chunk_chars=chunk_chars)
with get_openai_callback() as cb:
citation = self.cite_chain.run(texts[0])
if len(citation) < 3 or "Unknown" in citation or "insufficient" in citation:
citation = f"Unknown, {os.path.basename(path)}, {datetime.now().year}"
if key is None:
# get first name and year from citation
try:
author = re.search(r"([A-Z][a-z]+)", citation).group(1)
except AttributeError:
# panicking - no word??
raise ValueError(
f"Could not parse key from citation {citation}. Consider just passing key explicitly - e.g. docs.py (path, citation, key='mykey')"
)
try:
year = re.search(r"(\d{4})", citation).group(1)
except AttributeError:
year = ""
key = f"{author}{year}"
suffix = ""
while key + suffix in self.keys:
# move suffix to next letter
if suffix == "":
suffix = "a"
else:
suffix = chr(ord(suffix) + 1)
key += suffix
self.keys.add(key)
texts, metadata = read_source(path, citation, key, chunk_chars=chunk_chars)
# loose check to see if document was loaded
#
if len("".join(texts)) < 10 or (
not disable_check and not maybe_is_text("".join(texts))
):
raise ValueError(
f"This does not look like a text document: {path}. Path disable_check to ignore this error."
)
self.docs[path] = dict(texts=texts, metadata=metadata, key=key)
if self.index_docstore is not None:
self.index_docstore.add_texts(texts, metadatas=metadata)
def clear(self) -> None:
"""Clear the collection of documents."""
self.docs = dict()
self.keys = set()
self.index_docstore = None
# delete index file
pkl = self.index_path / "index.pkl"
if pkl.exists():
pkl.unlink()
fs = self.index_path / "index.faiss"
if fs.exists():
fs.unlink()
@property
def doc_previews(self) -> List[Tuple[int, str, str]]:
"""Return a list of tuples of (key, citation) for each document."""
return [
(
len(doc["texts"]),
doc["metadata"][0]["dockey"],
doc["metadata"][0]["citation"],
)
for doc in self.docs.values()
]
# to pickle, we have to save the index as a file
def __getstate__(self, embedding: Embeddings):
if embedding is None:
embedding = OpenAIEmbeddings()
if self.index_docstore is None and len(self.docs) > 0:
self._build_faiss_index(embedding)
state = self.__dict__.copy()
if self.index_docstore is not None:
state["_index"].save_local(self.index_path)
del state["_index"]
# remove LLMs (they can have callbacks, which can't be pickled)
del state["summary_chain"]
del state["qa_chain"]
del state["cite_chain"]
del state["search_chain"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
try:
self.index_docstore = FAISS.load_local(self.index_path, OpenAIEmbeddings())
except:
# they use some special exception type, but I don't want to import it
self.index_docstore = None
self.update_llm(
ChatOpenAI(temperature=0.1, max_tokens=512)
)
def _build_faiss_index(self, embedding: Embeddings = None):
if embedding is None:
embedding = OpenAIEmbeddings()
if self.index_docstore is None:
texts = reduce(
lambda x, y: x + y, [doc["texts"] for doc in self.docs.values()], []
)
metadatas = reduce(
lambda x, y: x + y, [doc["metadata"] for doc in self.docs.values()], []
)
# if the index exists, load it
if LOAD_INDEX_LOCALLY and (self.index_path / "index.faiss").exists():
self.index_docstore = FAISS.load_local(self.index_path, embedding)
# search if the text and metadata already existed in the index
for i in reversed(range(len(texts))):
text = texts[i]
metadata = metadatas[i]
for key, value in self.index_docstore.docstore.dict_.items():
if value.page_content == text:
if value.metadata.get('citation').split(os.sep)[-1] != metadata.get('citation').split(os.sep)[-1]:
self.index_docstore.docstore.dict_[key].metadata['citation'] = metadata.get('citation').split(os.sep)[-1]
self.index_docstore.docstore.dict_[key].metadata['dockey'] = metadata.get('citation').split(os.sep)[-1]
self.index_docstore.docstore.dict_[key].metadata['key'] = metadata.get('citation').split(os.sep)[-1]
texts.pop(i)
metadatas.pop(i)
# add remaining texts
if texts:
self.index_docstore.add_texts(texts=texts, metadatas=metadatas)
else:
# crete new index
self.index_docstore = FAISS.from_texts(texts, embedding, metadatas=metadatas)
#
if SAVE_INDEX_LOCALLY:
# save index.
self.index_docstore.save_local(self.index_path)
def _build_pinecone_index(self, embedding: Embeddings = None):
if embedding is None:
embedding = OpenAIEmbeddings()
if self.index_docstore is None:
pinecone.init(
api_key=os.environ['PINECONE_API_KEY'], # find at app.pinecone.io
environment=os.environ['PINECONE_ENVIRONMENT'] # next to api key in console
)
texts = reduce(
lambda x, y: x + y, [doc["texts"] for doc in self.docs.values()], []
)
metadatas = reduce(
lambda x, y: x + y, [doc["metadata"] for doc in self.docs.values()], []
)
# TODO: que cuando exista que no lo borre, sino que lo actualice
# index_name = "langchain-demo1"
# if index_name in pinecone.list_indexes():
# self.index_docstore = pinecone.Index(index_name)
# vectors = []
# for text, metadata in zip(texts, metadatas):
# # embed = <faltaria saber con que embedding se hizo el index que ya existia>
# self.index_docstore.upsert(vectors=vectors)
# else:
# if openai.api_type == 'azure':
# self.index_docstore = Pinecone.from_texts(texts, embedding, metadatas=metadatas, index_name=index_name)
# else:
# self.index_docstore = OriginalPinecone.from_texts(texts, embedding, metadatas=metadatas, index_name=index_name)
index_name = "langchain-demo1"
# if the index exists, delete it
if index_name in pinecone.list_indexes():
pinecone.delete_index(index_name)
# create new index
if openai.api_type == 'azure':
self.index_docstore = Pinecone.from_texts(texts, embedding, metadatas=metadatas, index_name=index_name)
else:
self.index_docstore = OriginalPinecone.from_texts(texts, embedding, metadatas=metadatas, index_name=index_name)
def get_evidence(
self,
answer: Answer,
embedding: Embeddings,
k: int = 3,
max_sources: int = 5,
marginal_relevance: bool = True,
) -> str:
if self.index_docstore is None:
self._build_faiss_index(embedding)
init_search_time = time.time()
# want to work through indices but less k
if marginal_relevance:
docs = self.index_docstore.max_marginal_relevance_search(
answer.question, k=k, fetch_k=5 * k
)
else:
docs = self.index_docstore.similarity_search(
answer.question, k=k, fetch_k=5 * k
)
if OPERATING_MODE == "debug":
print(f"time to search docs to build context: {time.time() - init_search_time:.2f} [s]")
init_summary_time = time.time()
partial_summary_time = ""
for i, doc in enumerate(docs):
with get_openai_callback() as cb:
init__partial_summary_time = time.time()
summary_of_chunked_text = self.summary_chain.run(
question=answer.question, context_str=doc.page_content
)
if OPERATING_MODE == "debug":
partial_summary_time += f"- time to make relevant summary of doc '{i}': {time.time() - init__partial_summary_time:.2f} [s]\n"
engine = self.summary_chain.llm.model_kwargs.get('deployment_id') or self.summary_chain.llm.model_name
if not answer.tokens:
answer.tokens = [{
'engine': engine,
'total_tokens': cb.total_tokens}]
else:
answer.tokens.append({
'engine': engine,
'total_tokens': cb.total_tokens
})
summarized_package = (
doc.metadata["key"],
doc.metadata["citation"],
summary_of_chunked_text,
doc.page_content,
)
if "Not applicable" not in summary_of_chunked_text and summarized_package not in answer.packages:
answer.packages.append(summarized_package)
yield answer
if len(answer.packages) == max_sources:
break
if OPERATING_MODE == "debug":
print(f"time to make all relevant summaries: {time.time() - init_summary_time:.2f} [s]")
# no se printea el ultimo caracter porque es un \n
print(partial_summary_time[:-1])
context_str = "\n\n".join(
[f"{citation}: {summary_of_chunked_text}"
for key, citation, summary_of_chunked_text, chunked_text in answer.packages
if "Not applicable" not in summary_of_chunked_text]
)
chunks_str = "\n\n".join(
[f"{citation}: {chunked_text}"
for key, citation, summary_of_chunked_text, chunked_text in answer.packages
if "Not applicable" not in summary_of_chunked_text]
)
valid_keys = [key
for key, citation, summary_of_chunked_text, chunked_textin in answer.packages
if "Not applicable" not in summary_of_chunked_text]
if len(valid_keys) > 0:
context_str += "\n\nValid keys: " + ", ".join(valid_keys)
chunks_str += "\n\nValid keys: " + ", ".join(valid_keys)
answer.context = context_str
answer.chunks = chunks_str
yield answer
def query(
self,
query: str,
embedding: Embeddings,
chat_history: list[tuple[str, str]],
k: int = 10,
max_sources: int = 5,
length_prompt: str = "about 100 words",
marginal_relevance: bool = True,
):
for answer in self._query(
query,
embedding,
chat_history,
k=k,
max_sources=max_sources,
length_prompt=length_prompt,
marginal_relevance=marginal_relevance,
):
pass
return answer
def _query(
self,
query: str,
embedding: Embeddings,
chat_history: list[tuple[str, str]],
k: int,
max_sources: int,
length_prompt: str,
marginal_relevance: bool,
):
if k < max_sources:
k = max_sources + 1
answer = Answer(question=query)
messages_qa = [system_message_prompt]
if len(chat_history) != 0:
for conversation in chat_history:
messages_qa.append(HumanMessagePromptTemplate.from_template(conversation[0]))
messages_qa.append(AIMessagePromptTemplate.from_template(conversation[1]))
messages_qa.append(human_qa_message_prompt)
chat_qa_prompt = ChatPromptTemplate.from_messages(messages_qa)
self.qa_chain = LLMChain(prompt=chat_qa_prompt, llm=self.llm)
for answer in self.get_evidence(
answer,
embedding,
k=k,
max_sources=max_sources,
marginal_relevance=marginal_relevance,
):
yield answer
references_dict = dict()
passages = dict()
if len(answer.context) < 10:
answer_text = "I cannot answer this question due to insufficient information."
else:
with get_openai_callback() as cb:
init_qa_time = time.time()
answer_text = self.qa_chain.run(
question=answer.question, context_str=answer.context, length=length_prompt
)
if OPERATING_MODE == "debug":
print(f"time to make the Q&A answer: {time.time() - init_qa_time:.2f} [s]")
engine = self.qa_chain.llm.model_kwargs.get('deployment_id') or self.qa_chain.llm.model_name
if not answer.tokens:
answer.tokens = [{
'engine': engine,
'total_tokens': cb.total_tokens}]
else:
answer.tokens.append({
'engine': engine,
'total_tokens': cb.total_tokens
})
# it still happens lol
if "(Foo2012)" in answer_text:
answer_text = answer_text.replace("(Foo2012)", "")
for key, citation, summary, text in answer.packages:
# do check for whole key (so we don't catch Callahan2019a with Callahan2019)
skey = key.split(" ")[0]
if skey + " " in answer_text or skey + ")" in answer_text:
references_dict[skey] = citation
passages[key] = text
references_str = "\n\n".join(
[f"{i+1}. ({k}): {c}" for i, (k, c) in enumerate(references_dict.items())]
)
# cost_str = f"{answer_text}\n\n"
cost_str = ""
itemized_cost = ""
total_amount = 0
for d in answer.tokens:
total_tokens = d.get('total_tokens')
if total_tokens:
engine = d.get('engine')
key_price = None
for key in PRICES.keys():
if re.match(f"{key}", engine):
key_price = key
break
if PRICES.get(key_price):
partial_amount = total_tokens / 1000 * PRICES.get(key_price)
total_amount += partial_amount
itemized_cost += f"- {engine}: {total_tokens} tokens\t ---> ${partial_amount:.4f},\n"
else:
itemized_cost += f"- {engine}: {total_tokens} tokens,\n"
# delete ,\n
itemized_cost = itemized_cost[:-2]
# add tokens to formatted answer
cost_str += f"Total cost: ${total_amount:.4f}\nItemized cost:\n{itemized_cost}"
answer.answer = answer_text
answer.cost_str = cost_str
answer.references = references_str
answer.passages = passages
yield answer
|