File size: 35,381 Bytes
d758270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import os
import cv2
import torch
import trimesh
import numpy as np
from kiui.op import safe_normalize, dot
from kiui.typing import *
class Mesh:
"""
A torch-native trimesh class, with support for ``ply/obj/glb`` formats.
Note:
This class only supports one mesh with a single texture image (an albedo texture and a metallic-roughness texture).
"""
def __init__(
self,
v: Optional[Tensor] = None,
f: Optional[Tensor] = None,
vn: Optional[Tensor] = None,
fn: Optional[Tensor] = None,
vt: Optional[Tensor] = None,
ft: Optional[Tensor] = None,
vc: Optional[Tensor] = None, # vertex color
albedo: Optional[Tensor] = None,
metallicRoughness: Optional[Tensor] = None,
device: Optional[torch.device] = None,
):
"""Init a mesh directly using all attributes.
Args:
v (Optional[Tensor]): vertices, float [N, 3]. Defaults to None.
f (Optional[Tensor]): faces, int [M, 3]. Defaults to None.
vn (Optional[Tensor]): vertex normals, float [N, 3]. Defaults to None.
fn (Optional[Tensor]): faces for normals, int [M, 3]. Defaults to None.
vt (Optional[Tensor]): vertex uv coordinates, float [N, 2]. Defaults to None.
ft (Optional[Tensor]): faces for uvs, int [M, 3]. Defaults to None.
vc (Optional[Tensor]): vertex colors, float [N, 3]. Defaults to None.
albedo (Optional[Tensor]): albedo texture, float [H, W, 3], RGB format. Defaults to None.
metallicRoughness (Optional[Tensor]): metallic-roughness texture, float [H, W, 3], metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]. Defaults to None.
device (Optional[torch.device]): torch device. Defaults to None.
"""
self.device = device
self.v = v
self.vn = vn
self.vt = vt
self.f = f
self.fn = fn
self.ft = ft
# will first see if there is vertex color to use
self.vc = vc
# only support a single albedo image
self.albedo = albedo
# pbr extension, metallic(Blue) = metallicRoughness[..., 2], roughness(Green) = metallicRoughness[..., 1]
# ref: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
self.metallicRoughness = metallicRoughness
self.ori_center = 0
self.ori_scale = 1
@classmethod
def load(cls, path, resize=True, clean=False, renormal=True, retex=False, bound=0.9, front_dir='+z', **kwargs):
"""load mesh from path.
Args:
path (str): path to mesh file, supports ply, obj, glb.
clean (bool, optional): perform mesh cleaning at load (e.g., merge close vertices). Defaults to False.
resize (bool, optional): auto resize the mesh using ``bound`` into [-bound, bound]^3. Defaults to True.
renormal (bool, optional): re-calc the vertex normals. Defaults to True.
retex (bool, optional): re-calc the uv coordinates, will overwrite the existing uv coordinates. Defaults to False.
bound (float, optional): bound to resize. Defaults to 0.9.
front_dir (str, optional): front-view direction of the mesh, should be [+-][xyz][ 123]. Defaults to '+z'.
device (torch.device, optional): torch device. Defaults to None.
Note:
a ``device`` keyword argument can be provided to specify the torch device.
If it's not provided, we will try to use ``'cuda'`` as the device if it's available.
Returns:
Mesh: the loaded Mesh object.
"""
# obj supports face uv
if path.endswith(".obj"):
mesh = cls.load_obj(path, **kwargs)
# trimesh only supports vertex uv, but can load more formats
else:
mesh = cls.load_trimesh(path, **kwargs)
# clean
if clean:
from kiui.mesh_utils import clean_mesh
vertices = mesh.v.detach().cpu().numpy()
triangles = mesh.f.detach().cpu().numpy()
vertices, triangles = clean_mesh(vertices, triangles, remesh=False)
mesh.v = torch.from_numpy(vertices).contiguous().float().to(mesh.device)
mesh.f = torch.from_numpy(triangles).contiguous().int().to(mesh.device)
print(f"[Mesh loading] v: {mesh.v.shape}, f: {mesh.f.shape}")
# auto-normalize
if resize:
mesh.auto_size(bound=bound)
# auto-fix normal
if renormal or mesh.vn is None:
mesh.auto_normal()
print(f"[Mesh loading] vn: {mesh.vn.shape}, fn: {mesh.fn.shape}")
# auto-fix texcoords
if retex or (mesh.albedo is not None and mesh.vt is None):
mesh.auto_uv(cache_path=path)
print(f"[Mesh loading] vt: {mesh.vt.shape}, ft: {mesh.ft.shape}")
# rotate front dir to +z
if front_dir != "+z":
# axis switch
if "-z" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, -1]], device=mesh.device, dtype=torch.float32)
elif "+x" in front_dir:
T = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
elif "-x" in front_dir:
T = torch.tensor([[0, 0, -1], [0, 1, 0], [1, 0, 0]], device=mesh.device, dtype=torch.float32)
elif "+y" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 0, 1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
elif "-y" in front_dir:
T = torch.tensor([[1, 0, 0], [0, 0, -1], [0, 1, 0]], device=mesh.device, dtype=torch.float32)
else:
T = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
# rotation (how many 90 degrees)
if '1' in front_dir:
T @= torch.tensor([[0, -1, 0], [1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
elif '2' in front_dir:
T @= torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
elif '3' in front_dir:
T @= torch.tensor([[0, 1, 0], [-1, 0, 0], [0, 0, 1]], device=mesh.device, dtype=torch.float32)
mesh.v @= T
mesh.vn @= T
return mesh
# load from obj file
@classmethod
def load_obj(cls, path, albedo_path=None, device=None):
"""load an ``obj`` mesh.
Args:
path (str): path to mesh.
albedo_path (str, optional): path to the albedo texture image, will overwrite the existing texture path if specified in mtl. Defaults to None.
device (torch.device, optional): torch device. Defaults to None.
Note:
We will try to read `mtl` path from `obj`, else we assume the file name is the same as `obj` but with `mtl` extension.
The `usemtl` statement is ignored, and we only use the last material path in `mtl` file.
Returns:
Mesh: the loaded Mesh object.
"""
assert os.path.splitext(path)[-1] == ".obj"
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# load obj
with open(path, "r") as f:
lines = f.readlines()
def parse_f_v(fv):
# pass in a vertex term of a face, return {v, vt, vn} (-1 if not provided)
# supported forms:
# f v1 v2 v3
# f v1/vt1 v2/vt2 v3/vt3
# f v1/vt1/vn1 v2/vt2/vn2 v3/vt3/vn3
# f v1//vn1 v2//vn2 v3//vn3
xs = [int(x) - 1 if x != "" else -1 for x in fv.split("/")]
xs.extend([-1] * (3 - len(xs)))
return xs[0], xs[1], xs[2]
vertices, texcoords, normals = [], [], []
faces, tfaces, nfaces = [], [], []
mtl_path = None
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
prefix = split_line[0].lower()
# mtllib
if prefix == "mtllib":
mtl_path = split_line[1]
# usemtl
elif prefix == "usemtl":
pass # ignored
# v/vn/vt
elif prefix == "v":
vertices.append([float(v) for v in split_line[1:]])
elif prefix == "vn":
normals.append([float(v) for v in split_line[1:]])
elif prefix == "vt":
val = [float(v) for v in split_line[1:]]
texcoords.append([val[0], 1.0 - val[1]])
elif prefix == "f":
vs = split_line[1:]
nv = len(vs)
v0, t0, n0 = parse_f_v(vs[0])
for i in range(nv - 2): # triangulate (assume vertices are ordered)
v1, t1, n1 = parse_f_v(vs[i + 1])
v2, t2, n2 = parse_f_v(vs[i + 2])
faces.append([v0, v1, v2])
tfaces.append([t0, t1, t2])
nfaces.append([n0, n1, n2])
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if len(texcoords) > 0
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if len(normals) > 0
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if len(texcoords) > 0
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if len(normals) > 0
else None
)
# see if there is vertex color
use_vertex_color = False
if mesh.v.shape[1] == 6:
use_vertex_color = True
mesh.vc = mesh.v[:, 3:]
mesh.v = mesh.v[:, :3]
print(f"[load_obj] use vertex color: {mesh.vc.shape}")
# try to load texture image
if not use_vertex_color:
# try to retrieve mtl file
mtl_path_candidates = []
if mtl_path is not None:
mtl_path_candidates.append(mtl_path)
mtl_path_candidates.append(os.path.join(os.path.dirname(path), mtl_path))
mtl_path_candidates.append(path.replace(".obj", ".mtl"))
mtl_path = None
for candidate in mtl_path_candidates:
if os.path.exists(candidate):
mtl_path = candidate
break
# if albedo_path is not provided, try retrieve it from mtl
metallic_path = None
roughness_path = None
if mtl_path is not None and albedo_path is None:
with open(mtl_path, "r") as f:
lines = f.readlines()
for line in lines:
split_line = line.split()
# empty line
if len(split_line) == 0:
continue
prefix = split_line[0]
if "map_Kd" in prefix:
# assume relative path!
albedo_path = os.path.join(os.path.dirname(path), split_line[1])
print(f"[load_obj] use texture from: {albedo_path}")
elif "map_Pm" in prefix:
metallic_path = os.path.join(os.path.dirname(path), split_line[1])
elif "map_Pr" in prefix:
roughness_path = os.path.join(os.path.dirname(path), split_line[1])
# still not found albedo_path, or the path doesn't exist
if albedo_path is None or not os.path.exists(albedo_path):
# init an empty texture
print(f"[load_obj] init empty albedo!")
# albedo = np.random.rand(1024, 1024, 3).astype(np.float32)
albedo = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5]) # default color
else:
albedo = cv2.imread(albedo_path, cv2.IMREAD_UNCHANGED)
albedo = cv2.cvtColor(albedo, cv2.COLOR_BGR2RGB)
albedo = albedo.astype(np.float32) / 255
print(f"[load_obj] load texture: {albedo.shape}")
mesh.albedo = torch.tensor(albedo, dtype=torch.float32, device=device)
# try to load metallic and roughness
if metallic_path is not None and roughness_path is not None:
print(f"[load_obj] load metallicRoughness from: {metallic_path}, {roughness_path}")
metallic = cv2.imread(metallic_path, cv2.IMREAD_UNCHANGED)
metallic = metallic.astype(np.float32) / 255
roughness = cv2.imread(roughness_path, cv2.IMREAD_UNCHANGED)
roughness = roughness.astype(np.float32) / 255
metallicRoughness = np.stack([np.zeros_like(metallic), roughness, metallic], axis=-1)
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()
return mesh
@classmethod
def load_trimesh(cls, path, device=None):
"""load a mesh using ``trimesh.load()``.
Can load various formats like ``glb`` and serves as a fallback.
Note:
We will try to merge all meshes if the glb contains more than one,
but **this may cause the texture to lose**, since we only support one texture image!
Args:
path (str): path to the mesh file.
device (torch.device, optional): torch device. Defaults to None.
Returns:
Mesh: the loaded Mesh object.
"""
mesh = cls()
# device
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mesh.device = device
# use trimesh to load ply/glb
_data = trimesh.load(path)
if isinstance(_data, trimesh.Scene):
if len(_data.geometry) == 1:
_mesh = list(_data.geometry.values())[0]
else:
print(f"[load_trimesh] concatenating {len(_data.geometry)} meshes.")
_concat = []
# loop the scene graph and apply transform to each mesh
scene_graph = _data.graph.to_flattened() # dict {name: {transform: 4x4 mat, geometry: str}}
for k, v in scene_graph.items():
name = v['geometry']
if name in _data.geometry and isinstance(_data.geometry[name], trimesh.Trimesh):
transform = v['transform']
_concat.append(_data.geometry[name].apply_transform(transform))
_mesh = trimesh.util.concatenate(_concat)
else:
_mesh = _data
if _mesh.visual.kind == 'vertex':
vertex_colors = _mesh.visual.vertex_colors
vertex_colors = np.array(vertex_colors[..., :3]).astype(np.float32) / 255
mesh.vc = torch.tensor(vertex_colors, dtype=torch.float32, device=device)
print(f"[load_trimesh] use vertex color: {mesh.vc.shape}")
elif _mesh.visual.kind == 'texture':
_material = _mesh.visual.material
if isinstance(_material, trimesh.visual.material.PBRMaterial):
texture = np.array(_material.baseColorTexture).astype(np.float32) / 255
# load metallicRoughness if present
if _material.metallicRoughnessTexture is not None:
metallicRoughness = np.array(_material.metallicRoughnessTexture).astype(np.float32) / 255
mesh.metallicRoughness = torch.tensor(metallicRoughness, dtype=torch.float32, device=device).contiguous()
elif isinstance(_material, trimesh.visual.material.SimpleMaterial):
texture = np.array(_material.to_pbr().baseColorTexture).astype(np.float32) / 255
else:
raise NotImplementedError(f"material type {type(_material)} not supported!")
mesh.albedo = torch.tensor(texture[..., :3], dtype=torch.float32, device=device).contiguous()
print(f"[load_trimesh] load texture: {texture.shape}")
else:
texture = np.ones((1024, 1024, 3), dtype=np.float32) * np.array([0.5, 0.5, 0.5])
mesh.albedo = torch.tensor(texture, dtype=torch.float32, device=device)
print(f"[load_trimesh] failed to load texture.")
vertices = _mesh.vertices
try:
texcoords = _mesh.visual.uv
texcoords[:, 1] = 1 - texcoords[:, 1]
except Exception as e:
texcoords = None
try:
normals = _mesh.vertex_normals
except Exception as e:
normals = None
# trimesh only support vertex uv...
faces = tfaces = nfaces = _mesh.faces
mesh.v = torch.tensor(vertices, dtype=torch.float32, device=device)
mesh.vt = (
torch.tensor(texcoords, dtype=torch.float32, device=device)
if texcoords is not None
else None
)
mesh.vn = (
torch.tensor(normals, dtype=torch.float32, device=device)
if normals is not None
else None
)
mesh.f = torch.tensor(faces, dtype=torch.int32, device=device)
mesh.ft = (
torch.tensor(tfaces, dtype=torch.int32, device=device)
if texcoords is not None
else None
)
mesh.fn = (
torch.tensor(nfaces, dtype=torch.int32, device=device)
if normals is not None
else None
)
return mesh
# sample surface (using trimesh)
def sample_surface(self, count: int):
"""sample points on the surface of the mesh.
Args:
count (int): number of points to sample.
Returns:
torch.Tensor: the sampled points, float [count, 3].
"""
_mesh = trimesh.Trimesh(vertices=self.v.detach().cpu().numpy(), faces=self.f.detach().cpu().numpy())
points, face_idx = trimesh.sample.sample_surface(_mesh, count)
points = torch.from_numpy(points).float().to(self.device)
return points
# aabb
def aabb(self):
"""get the axis-aligned bounding box of the mesh.
Returns:
Tuple[torch.Tensor]: the min xyz and max xyz of the mesh.
"""
return torch.min(self.v, dim=0).values, torch.max(self.v, dim=0).values
# unit size
@torch.no_grad()
def auto_size(self, bound=0.9):
"""auto resize the mesh.
Args:
bound (float, optional): resizing into ``[-bound, bound]^3``. Defaults to 0.9.
"""
vmin, vmax = self.aabb()
self.ori_center = (vmax + vmin) / 2
self.ori_scale = 2 * bound / torch.max(vmax - vmin).item()
self.v = (self.v - self.ori_center) * self.ori_scale
def auto_normal(self):
"""auto calculate the vertex normals.
"""
i0, i1, i2 = self.f[:, 0].long(), self.f[:, 1].long(), self.f[:, 2].long()
v0, v1, v2 = self.v[i0, :], self.v[i1, :], self.v[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
vn = torch.zeros_like(self.v)
vn.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
vn.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
vn = torch.where(
dot(vn, vn) > 1e-20,
vn,
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=vn.device),
)
vn = safe_normalize(vn)
self.vn = vn
self.fn = self.f
def auto_uv(self, cache_path=None, vmap=True):
"""auto calculate the uv coordinates.
Args:
cache_path (str, optional): path to save/load the uv cache as a npz file, this can avoid calculating uv every time when loading the same mesh, which is time-consuming. Defaults to None.
vmap (bool, optional): remap vertices based on uv coordinates, so each v correspond to a unique vt (necessary for formats like gltf).
Usually this will duplicate the vertices on the edge of uv atlas. Defaults to True.
"""
# try to load cache
if cache_path is not None:
cache_path = os.path.splitext(cache_path)[0] + "_uv.npz"
if cache_path is not None and os.path.exists(cache_path):
data = np.load(cache_path)
vt_np, ft_np, vmapping = data["vt"], data["ft"], data["vmapping"]
else:
import xatlas
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().int().cpu().numpy()
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
# chart_options.max_iterations = 4
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# save to cache
if cache_path is not None:
np.savez(cache_path, vt=vt_np, ft=ft_np, vmapping=vmapping)
vt = torch.from_numpy(vt_np.astype(np.float32)).to(self.device)
ft = torch.from_numpy(ft_np.astype(np.int32)).to(self.device)
self.vt = vt
self.ft = ft
if vmap:
vmapping = torch.from_numpy(vmapping.astype(np.int64)).long().to(self.device)
self.align_v_to_vt(vmapping)
def align_v_to_vt(self, vmapping=None):
""" remap v/f and vn/fn to vt/ft.
Args:
vmapping (np.ndarray, optional): the mapping relationship from f to ft. Defaults to None.
"""
if vmapping is None:
ft = self.ft.view(-1).long()
f = self.f.view(-1).long()
vmapping = torch.zeros(self.vt.shape[0], dtype=torch.long, device=self.device)
vmapping[ft] = f # scatter, randomly choose one if index is not unique
self.v = self.v[vmapping]
self.f = self.ft
if self.vn is not None:
self.vn = self.vn[vmapping]
self.fn = self.ft
def to(self, device):
"""move all tensor attributes to device.
Args:
device (torch.device): target device.
Returns:
Mesh: self.
"""
self.device = device
for name in ["v", "f", "vn", "fn", "vt", "ft", "albedo", "vc", "metallicRoughness"]:
tensor = getattr(self, name)
if tensor is not None:
setattr(self, name, tensor.to(device))
return self
def write(self, path):
"""write the mesh to a path.
Args:
path (str): path to write, supports ply, obj and glb.
"""
if path.endswith(".ply"):
self.write_ply(path)
elif path.endswith(".obj"):
self.write_obj(path)
elif path.endswith(".glb") or path.endswith(".gltf"):
self.write_glb(path)
else:
raise NotImplementedError(f"format {path} not supported!")
def write_ply(self, path):
"""write the mesh in ply format. Only for geometry!
Args:
path (str): path to write.
"""
if self.albedo is not None:
print(f'[WARN] ply format does not support exporting texture, will ignore!')
v_np = self.v.detach().cpu().numpy()
f_np = self.f.detach().cpu().numpy()
_mesh = trimesh.Trimesh(vertices=v_np, faces=f_np)
_mesh.export(path)
def write_glb(self, path):
"""write the mesh in glb/gltf format.
This will create a scene with a single mesh.
Args:
path (str): path to write.
"""
# assert self.v.shape[0] == self.vn.shape[0] and self.v.shape[0] == self.vt.shape[0]
if self.vt is not None and self.v.shape[0] != self.vt.shape[0]:
self.align_v_to_vt()
import pygltflib
f_np = self.f.detach().cpu().numpy().astype(np.uint32)
f_np_blob = f_np.flatten().tobytes()
v_np = self.v.detach().cpu().numpy().astype(np.float32)
v_np_blob = v_np.tobytes()
blob = f_np_blob + v_np_blob
byteOffset = len(blob)
# base mesh
gltf = pygltflib.GLTF2(
scene=0,
scenes=[pygltflib.Scene(nodes=[0])],
nodes=[pygltflib.Node(mesh=0)],
meshes=[pygltflib.Mesh(primitives=[pygltflib.Primitive(
# indices to accessors (0 is triangles)
attributes=pygltflib.Attributes(
POSITION=1,
),
indices=0,
)])],
buffers=[
pygltflib.Buffer(byteLength=len(f_np_blob) + len(v_np_blob))
],
# buffer view (based on dtype)
bufferViews=[
# triangles; as flatten (element) array
pygltflib.BufferView(
buffer=0,
byteLength=len(f_np_blob),
target=pygltflib.ELEMENT_ARRAY_BUFFER, # GL_ELEMENT_ARRAY_BUFFER (34963)
),
# positions; as vec3 array
pygltflib.BufferView(
buffer=0,
byteOffset=len(f_np_blob),
byteLength=len(v_np_blob),
byteStride=12, # vec3
target=pygltflib.ARRAY_BUFFER, # GL_ARRAY_BUFFER (34962)
),
],
accessors=[
# 0 = triangles
pygltflib.Accessor(
bufferView=0,
componentType=pygltflib.UNSIGNED_INT, # GL_UNSIGNED_INT (5125)
count=f_np.size,
type=pygltflib.SCALAR,
max=[int(f_np.max())],
min=[int(f_np.min())],
),
# 1 = positions
pygltflib.Accessor(
bufferView=1,
componentType=pygltflib.FLOAT, # GL_FLOAT (5126)
count=len(v_np),
type=pygltflib.VEC3,
max=v_np.max(axis=0).tolist(),
min=v_np.min(axis=0).tolist(),
),
],
)
# append texture info
if self.vt is not None:
vt_np = self.vt.detach().cpu().numpy().astype(np.float32)
vt_np_blob = vt_np.tobytes()
albedo = self.albedo.detach().cpu().numpy()
albedo = (albedo * 255).astype(np.uint8)
albedo = cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR)
albedo_blob = cv2.imencode('.png', albedo)[1].tobytes()
# update primitive
gltf.meshes[0].primitives[0].attributes.TEXCOORD_0 = 2
gltf.meshes[0].primitives[0].material = 0
# update materials
gltf.materials.append(pygltflib.Material(
pbrMetallicRoughness=pygltflib.PbrMetallicRoughness(
baseColorTexture=pygltflib.TextureInfo(index=0, texCoord=0),
metallicFactor=0.0,
roughnessFactor=1.0,
),
alphaMode=pygltflib.OPAQUE,
alphaCutoff=None,
doubleSided=True,
))
gltf.textures.append(pygltflib.Texture(sampler=0, source=0))
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
gltf.images.append(pygltflib.Image(bufferView=3, mimeType="image/png"))
# update buffers
gltf.bufferViews.append(
# index = 2, texcoords; as vec2 array
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(vt_np_blob),
byteStride=8, # vec2
target=pygltflib.ARRAY_BUFFER,
)
)
gltf.accessors.append(
# 2 = texcoords
pygltflib.Accessor(
bufferView=2,
componentType=pygltflib.FLOAT,
count=len(vt_np),
type=pygltflib.VEC2,
max=vt_np.max(axis=0).tolist(),
min=vt_np.min(axis=0).tolist(),
)
)
blob += vt_np_blob
byteOffset += len(vt_np_blob)
gltf.bufferViews.append(
# index = 3, albedo texture; as none target
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(albedo_blob),
)
)
blob += albedo_blob
byteOffset += len(albedo_blob)
gltf.buffers[0].byteLength = byteOffset
# append metllic roughness
if self.metallicRoughness is not None:
metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
metallicRoughness = cv2.cvtColor(metallicRoughness, cv2.COLOR_RGB2BGR)
metallicRoughness_blob = cv2.imencode('.png', metallicRoughness)[1].tobytes()
# update texture definition
gltf.materials[0].pbrMetallicRoughness.metallicFactor = 1.0
gltf.materials[0].pbrMetallicRoughness.roughnessFactor = 1.0
gltf.materials[0].pbrMetallicRoughness.metallicRoughnessTexture = pygltflib.TextureInfo(index=1, texCoord=0)
gltf.textures.append(pygltflib.Texture(sampler=1, source=1))
gltf.samplers.append(pygltflib.Sampler(magFilter=pygltflib.LINEAR, minFilter=pygltflib.LINEAR_MIPMAP_LINEAR, wrapS=pygltflib.REPEAT, wrapT=pygltflib.REPEAT))
gltf.images.append(pygltflib.Image(bufferView=4, mimeType="image/png"))
# update buffers
gltf.bufferViews.append(
# index = 4, metallicRoughness texture; as none target
pygltflib.BufferView(
buffer=0,
byteOffset=byteOffset,
byteLength=len(metallicRoughness_blob),
)
)
blob += metallicRoughness_blob
byteOffset += len(metallicRoughness_blob)
gltf.buffers[0].byteLength = byteOffset
# set actual data
gltf.set_binary_blob(blob)
# glb = b"".join(gltf.save_to_bytes())
gltf.save(path)
def write_obj(self, path):
"""write the mesh in obj format. Will also write the texture and mtl files.
Args:
path (str): path to write.
"""
mtl_path = path.replace(".obj", ".mtl")
albedo_path = path.replace(".obj", "_albedo.png")
metallic_path = path.replace(".obj", "_metallic.png")
roughness_path = path.replace(".obj", "_roughness.png")
v_np = self.v.detach().cpu().numpy()
vt_np = self.vt.detach().cpu().numpy() if self.vt is not None else None
vn_np = self.vn.detach().cpu().numpy() if self.vn is not None else None
f_np = self.f.detach().cpu().numpy()
ft_np = self.ft.detach().cpu().numpy() if self.ft is not None else None
fn_np = self.fn.detach().cpu().numpy() if self.fn is not None else None
with open(path, "w") as fp:
fp.write(f"mtllib {os.path.basename(mtl_path)} \n")
for v in v_np:
fp.write(f"v {v[0]} {v[1]} {v[2]} \n")
if vt_np is not None:
for v in vt_np:
fp.write(f"vt {v[0]} {1 - v[1]} \n")
if vn_np is not None:
for v in vn_np:
fp.write(f"vn {v[0]} {v[1]} {v[2]} \n")
fp.write(f"usemtl defaultMat \n")
for i in range(len(f_np)):
fp.write(
f'f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1 if ft_np is not None else ""}/{fn_np[i, 0] + 1 if fn_np is not None else ""} \
{f_np[i, 1] + 1}/{ft_np[i, 1] + 1 if ft_np is not None else ""}/{fn_np[i, 1] + 1 if fn_np is not None else ""} \
{f_np[i, 2] + 1}/{ft_np[i, 2] + 1 if ft_np is not None else ""}/{fn_np[i, 2] + 1 if fn_np is not None else ""} \n'
)
with open(mtl_path, "w") as fp:
fp.write(f"newmtl defaultMat \n")
fp.write(f"Ka 1 1 1 \n")
fp.write(f"Kd 1 1 1 \n")
fp.write(f"Ks 0 0 0 \n")
fp.write(f"Tr 1 \n")
fp.write(f"illum 1 \n")
fp.write(f"Ns 0 \n")
if self.albedo is not None:
fp.write(f"map_Kd {os.path.basename(albedo_path)} \n")
if self.metallicRoughness is not None:
# ref: https://en.wikipedia.org/wiki/Wavefront_.obj_file#Physically-based_Rendering
fp.write(f"map_Pm {os.path.basename(metallic_path)} \n")
fp.write(f"map_Pr {os.path.basename(roughness_path)} \n")
if self.albedo is not None:
albedo = self.albedo.detach().cpu().numpy()
albedo = (albedo * 255).astype(np.uint8)
cv2.imwrite(albedo_path, cv2.cvtColor(albedo, cv2.COLOR_RGB2BGR))
if self.metallicRoughness is not None:
metallicRoughness = self.metallicRoughness.detach().cpu().numpy()
metallicRoughness = (metallicRoughness * 255).astype(np.uint8)
cv2.imwrite(metallic_path, metallicRoughness[..., 2])
cv2.imwrite(roughness_path, metallicRoughness[..., 1])
|