Spaces:
Sleeping
Sleeping
File size: 15,827 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Modified by Jiale Xu
# The modifications are subject to the same license as the original.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .ray_marcher import MipRayMarcher2
from . import math_utils
def generate_planes():
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
Bugfix reference: https://github.com/NVlabs/eg3d/issues/67
"""
return torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]],
[[0, 0, 1],
[0, 1, 0],
[1, 0, 0]]], dtype=torch.float32)
def project_onto_planes(planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
N, M, C = coordinates.shape
n_planes, _, _ = planes.shape
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
projections = torch.bmm(coordinates, inv_planes)
return projections[..., :2]
def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
plane_features = plane_features.view(N*n_planes, C, H, W)
dtype = plane_features.dtype
coordinates = (2/box_warp) * coordinates # add specific box bounds
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)
output_features = torch.nn.functional.grid_sample(
plane_features,
projected_coordinates.to(dtype),
mode=mode,
padding_mode=padding_mode,
align_corners=False,
).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_3dgrid(grid, coordinates):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
sampled_features = torch.nn.functional.grid_sample(
grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear',
padding_mode='zeros',
align_corners=False,
)
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
"""
Modified original version to filter out-of-box samples as TensoRF does.
Reference:
TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277
"""
def __init__(self):
super().__init__()
self.activation_factory = self._build_activation_factory()
self.ray_marcher = MipRayMarcher2(self.activation_factory)
self.plane_axes = generate_planes()
def _build_activation_factory(self):
def activation_factory(options: dict):
if options['clamp_mode'] == 'softplus':
return lambda x: F.softplus(x - 1) # activation bias of -1 makes things initialize better
else:
assert False, "Renderer only supports `clamp_mode`=`softplus`!"
return activation_factory
def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor,
planes: torch.Tensor, decoder: nn.Module, rendering_options: dict):
"""
Additional filtering is applied to filter out-of-box samples.
Modifications made by Zexin He.
"""
# context related variables
batch_size, num_rays, samples_per_ray, _ = depths.shape
device = depths.device
# define sample points with depths
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
# filter out-of-box samples
mask_inbox = \
(rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
(sample_coordinates <= rendering_options['sampler_bbox_max'])
mask_inbox = mask_inbox.all(-1)
# forward model according to all samples
_out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
# set out-of-box samples to zeros(rgb) & -inf(sigma)
SAFE_GUARD = 3
DATA_TYPE = _out['sigma'].dtype
colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE)
densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD
colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox]
# reshape back
colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])
return colors_pass, densities_pass
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
# self.plane_axes = self.plane_axes.to(ray_origins.device)
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
is_ray_valid = ray_end > ray_start
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
else:
# Create stratified depth samples
depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
# Coarse Pass
colors_coarse, densities_coarse = self._forward_pass(
depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins,
planes=planes, decoder=decoder, rendering_options=rendering_options)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
colors_fine, densities_fine = self._forward_pass(
depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins,
planes=planes, decoder=decoder, rendering_options=rendering_options)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options):
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options)
out['sigma'] = self.activation_factory(options)(out['sigma'])
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
if normals1 is not None and normals2 is not None:
all_normals = torch.cat([normals1, normals2], dim = -2)
else:
all_normals = None
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
if all_normals is not None:
all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1]))
return all_depths, all_colors, all_normals, all_densities
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
|