Spaces:
Running
Running
File size: 5,553 Bytes
6815db7 99a0547 6815db7 80f1248 a965d0b 80f1248 6815db7 3442e02 6815db7 3442e02 6815db7 3442e02 6815db7 80f1248 6815db7 3f3b93c 6815db7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'stylegan_xl')
ORIGINAL_REPO_URL = 'https://github.com/autonomousvision/stylegan_xl'
TITLE = 'autonomousvision/stylegan_xl'
DESCRIPTION = f'''This is a demo for {ORIGINAL_REPO_URL}.
For class-conditional models, you can specify the class index.
Index-to-label dictionaries for ImageNet and CIFAR-10 can be found [here](https://raw.githubusercontent.com/autonomousvision/stylegan_xl/main/misc/imagenet_idx2labels.txt) and [here](https://www.cs.toronto.edu/~kriz/cifar.html), respectively.
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN-XL/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### ImageNet
- size: 128x128
- class index: 0-999
- seed: 0
![ImageNet samples]({SAMPLE_IMAGE_DIR}/imagenet.jpg)
### CIFAR-10
- size: 32x32
- class index: 0-9
- seed: 0-9
![CIFAR-10 samples]({SAMPLE_IMAGE_DIR}/cifar10.jpg)
### FFHQ
- size: 256x256
- seed: 0-99
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### Pokemon
- size: 256x256
- seed: 0-99
![Pokemon samples]({SAMPLE_IMAGE_DIR}/pokemon.jpg)
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
mat = np.eye(3)
sin = np.sin(angle / 360 * np.pi * 2)
cos = np.cos(angle / 360 * np.pi * 2)
mat[0][0] = cos
mat[0][1] = sin
mat[0][2] = translate[0]
mat[1][0] = -sin
mat[1][1] = cos
mat[1][2] = translate[1]
return mat
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model_name: str, class_index: int, seed: int,
truncation_psi: float, tx: float, ty: float, angle: float,
model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
class_index = round(class_index)
class_index = min(max(0, class_index), model.c_dim - 1)
class_index = torch.tensor(class_index, dtype=torch.long)
if class_index >= 0:
label[:, class_index] = 1
mat = make_transform((tx, ty), angle)
mat = np.linalg.inv(mat)
model.synthesis.input.transform.copy_(torch.from_numpy(mat))
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(model_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN-XL',
f'models/{model_name}.pkl',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
args = parse_args()
device = torch.device(args.device)
model_names = [
'imagenet16',
'imagenet32',
'imagenet64',
'imagenet128',
'cifar10',
'ffhq256',
'pokemon256',
]
model_dict = {name: load_model(name, device) for name in model_names}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(model_names,
type='value',
default='imagenet128',
label='Model'),
gr.inputs.Number(default=284, label='Class index'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'),
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|