File size: 17,409 Bytes
09a1406
 
 
 
 
 
 
 
 
 
 
 
 
ecb7130
 
 
 
 
50c3f7b
925a6c0
45fe6a4
 
 
 
 
 
68cdd74
925a6c0
09a1406
 
c626607
 
09a1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c626607
09a1406
 
 
 
 
 
 
 
c626607
09a1406
 
 
 
c626607
09a1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c626607
09a1406
ecb7130
09a1406
 
 
 
 
ecb7130
 
 
09a1406
 
 
 
 
 
 
 
 
c626607
09a1406
ecb7130
09a1406
 
 
 
c626607
09a1406
 
 
 
ecb7130
 
 
 
 
 
 
 
 
 
09a1406
ecb7130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecb7130
09a1406
 
 
 
 
c626607
09a1406
 
 
 
 
 
c626607
09a1406
 
ecb7130
 
09a1406
 
 
 
 
 
 
 
c626607
09a1406
 
 
ecb7130
 
c626607
ecb7130
 
 
c626607
ecb7130
 
 
 
 
 
 
 
 
 
09a1406
 
 
 
 
c626607
09a1406
ecb7130
09a1406
 
 
 
c626607
ecb7130
09a1406
ecb7130
09a1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c626607
09a1406
 
 
 
 
 
ecb7130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09a1406
 
ecb7130
09a1406
 
 
249b63d
09a1406
 
249b63d
09a1406
 
ecb7130
09a1406
 
 
 
 
ecb7130
 
 
09a1406
 
 
 
 
 
 
 
 
 
 
 
c626607
68cdd74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import streamlit as st
import pandas as pd
from groq import Groq
from jobspy import scrape_jobs
from resume_advance_analysis import *
from extraction import *
from typing import List, Dict, Any
import json
import re
import os
import logging


def make_clickable_link(link):
    return f'<a href="{link}" target="_blank">{link}</a>'



# os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
if groq_api_key is None:
        try:
            groq_api_key = st.secrets["GROQ_API_KEY"]
        except Exception as e:
            st.error("GROQ_API_KEY is not set in the environment variables or Streamlit secrets.")
            groq_api_key = None

# groq_api_key = st.secrets["GROQ_API_KEY"]

# Configure logging
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# logger = logging.getLogger(__name__)

class JobSuggestionEngine:
    def __init__(self):

        # self.llm = ChatGroq(
        #     groq_api_key = groq_api_key,
        #     model_name="llama-3.1-70b-versatile",
        #     temperature=0.7,
        #     max_tokens=4096
        # )
        self.client = Groq(api_key=groq_api_key)
    
    def _extract_json(self, text: str) -> Dict[str, Any]:
        """
                Extracting JSON from LLM
        """
        try:
            # logger.debug("Extracting JSON from LLM response")
            # Clean and extract JSON
            json_match = re.search(r'\{.*\}', text, re.DOTALL)
            if json_match:
                return json.loads(json_match.group(0))
            return {}
        
        except Exception as e:
            st.error(f"JSON Extraction Error: {e}")
            # logger.error(f"JSON Extraction Error: {e}")
            return {}
    
    def generate_job_suggestions(self, resume_data: cv) -> List[Dict[str, str]]:

        # logger.info("Generating job suggestions based on resume")

        prompt = f"""Based on the following resume details, provide job suggestions:

            Resume Details:
            - Skills: {', '.join(resume_data.skills or [])}
            - Certifications: {', '.join(resume_data.certifications or [])}
            - Years of Experience: {resume_data.years_of_exp or 0}
            
            Tasks:
            1. Suggest most potential 3 job roles that match the profile
            2. Include job role, brief description, and why it's suitable
            3. Respond in strict JSON format

            Required JSON Structure:
            {{
                "job_suggestions": [
                    {{
                        "role": "Job Role",
                        "description": "Brief job description",
                        "suitability_reason": "Why this role matches the resume"
                    }}
                ]
            }}


            """
        try:

            # logger.debug(f"Calling Groq API with prompt: {prompt[:100]}...") # start of api call
            
            # API call to the Groq client for chat completions
            chat_completion = self.client.chat.completions.create(
                messages=[
                    {"role": "system", "content": "You are a career advisor generating job suggestions based on resume details."},
                    {"role": "user", "content": prompt}
                ],
                model="llama3-8b-8192",  
                temperature=0.7,  
                max_tokens=1024, 
                top_p=1,
                stop=None,
                stream=False
            )
            
            # Extract and parse the JSON response from the completion
            response_text = chat_completion.choices[0].message.content
            suggestions_data = self._extract_json(response_text)

            # logger.info(f"Job suggestions generated: {len(suggestions_data.get('job_suggestions', []))} found")
            
            # Return job suggestions, if not found -> empty list 
            return suggestions_data.get('job_suggestions', [])
        
        except Exception as e:
            st.error(f"Job Suggestion Error: {e}")
            # logger.error(f"Job Suggestion Error: {e}")
            return []

def Job_assistant():
    st.title("πŸ“„ Job Suggestion & Search Assistant")

    # Initialize session state for resume analysis tab
    if 'uploaded_resume' not in st.session_state:
        st.session_state.uploaded_resume = None
    if 'resume_data' not in st.session_state:
        st.session_state.resume_data = None
    if 'job_suggestions' not in st.session_state:
        st.session_state.job_suggestions = []
    if 'improvement_suggestions' not in st.session_state:
        st.session_state.improvement_suggestions = {}
    
    # Initialize session state for job search tab
    if 'site_name' not in st.session_state:
        st.session_state.site_name = ["indeed", "glassdoor"]
    if 'search_term' not in st.session_state:
        st.session_state.search_term = "software engineer"
    if 'location' not in st.session_state:
        st.session_state.location = "San Francisco, CA"
    if 'results_wanted' not in st.session_state:
        st.session_state.results_wanted = 20
    if 'hours_old' not in st.session_state:
        st.session_state.hours_old = 72
    if 'country_indeed' not in st.session_state:
        st.session_state.country_indeed = "USA"
    if 'job_search_results' not in st.session_state:
        st.session_state.job_search_results = pd.DataFrame()
    
    # Tabs for functionalities
    tab1, tab2 = st.tabs(["Resume Analysis", "Direct Job Search"])
    
    
    with tab1:
        st.header("Resume Analysis & Job Suggestions")
        
        # File Upload
        uploaded_resume = st.file_uploader(
            "Upload Resume", 
            type=['pdf', 'txt'],
            help="Upload your resume in PDF or TXT format"
        )
        
        # # Initialize LLM 
        # try:
        #     llm = initialize_llm()
        #     logger.info("LLM initialized successfully")

        # except Exception as e:
        #     st.error(f"LLM Initialization Error: {e}")
        #     logger.error(f"LLM Initialization Error: {e}")
        #     st.stop()
        
        if uploaded_resume:
            st.session_state.uploaded_resume = uploaded_resume
            # Process Resume
            with st.spinner("Analyzing Resume..."):
                try:
                    # Extract resume text
                    resume_text = process_file(uploaded_resume)
                    # logger.info("Resume extracted successfully")
                    
                    # Extract structured CV data
                    candidates = extract_cv_data(resume_text)
                    
                    if not candidates:
                        st.error("Could not extract resume data")
                        # logger.error("No candidates extracted from resume")
                        st.stop()
                    
                    st.session_state.resume_data = candidates[0]

                    # Display extracted candidate information
                    st.subheader("Resume Analysis")
                    display_candidates_info(candidates)
                    
                    resume_data = candidates[0]
                
                except Exception as e:
                    st.error(f"Resume Processing Error: {e}")
                    # logger.error(f"Resume Processing Error: {e}")
                    st.stop()
            
            # Initialize Job Suggestion Engine
            if st.session_state.resume_data:
                suggestion_engine = JobSuggestionEngine()
                # logger.info("Job_Suggestion_Engine initialized")
                
                # Generate Job Suggestions
                job_suggestions = suggestion_engine.generate_job_suggestions(resume_data)
                # logger.info(f"Generated {len(job_suggestions)} job suggestions")

                st.session_state.job_suggestions = job_suggestions

                # Display Job Suggestions
                st.header("🎯 Job Suggestions")
                # for suggestion in job_suggestions:
                for suggestion in st.session_state.job_suggestions:
                    with st.expander(f"{suggestion.get('role', 'Unnamed Role')}"):
                        st.write(f"**Description:** {suggestion.get('description', 'No description')}")
                        st.write(f"**Suitability:** {suggestion.get('suitability_reason', 'Not specified')}")


            try:
                    # Extract resume text
                    resume_text = process_file(uploaded_resume)
                    # logger.info("Resume text extracted again for improvement suggestions")

                    # Initialize Resume Improvement Engine
                    improvement_engine = ResumeImprovementEngine()
                    
                    # Generate Improvement Suggestions
                    improvement_suggestions = improvement_engine.generate_resume_improvement_suggestions(resume_text)
                    # logger.info("Resume improvement suggestions generated")
                    st.session_state.improvement_suggestions = improvement_suggestions

                    # Display Suggestions
                    st.subheader("πŸ” Comprehensive Resume Analysis")
                    
                    # Overall Assessment
                    if improvement_suggestions.get('overall_assessment'):
                        with st.expander("πŸ“Š Overall Assessment"):
                            st.write("**Strengths:**")
                            for strength in improvement_suggestions['overall_assessment'].get('strengths', []):
                                st.markdown(f"- {strength}")
                            
                            st.write("**Weaknesses:**")
                            for weakness in improvement_suggestions['overall_assessment'].get('weaknesses', []):
                                st.markdown(f"- {weakness}")
                    
                    # Section Recommendations
                    if improvement_suggestions.get('section_recommendations'):
                        with st.expander("πŸ“ Section-by-Section Recommendations"):
                            for section, details in improvement_suggestions['section_recommendations'].items():
                                st.subheader(f"{section.replace('_', ' ').title()} Section")
                                st.write(f"**Current Status:** {details.get('current_status', 'No assessment')}")
                                
                                st.write("**Improvement Suggestions:**")
                                for suggestion in details.get('improvement_suggestions', []):
                                    st.markdown(f"- {suggestion}")
                    
                    # Additional Insights
                    st.subheader("✨ Additional Recommendations")
                    
                    # Writing Improvements
                    if improvement_suggestions.get('writing_improvements'):
                        with st.expander("✍️ Writing & Formatting Advice"):
                            st.write("**Language Suggestions:**")
                            for lang_suggestion in improvement_suggestions['writing_improvements'].get('language_suggestions', []):
                                st.markdown(f"- {lang_suggestion}")
                            
                            st.write("**Formatting Advice:**")
                            for format_advice in improvement_suggestions['writing_improvements'].get('formatting_advice', []):
                                st.markdown(f"- {format_advice}")
                    
                    # Additional Sections
                    if improvement_suggestions.get('additional_sections_recommended'):
                        with st.expander("πŸ“‹ Suggested Additional Sections"):
                            for section in improvement_suggestions['additional_sections_recommended']:
                                st.markdown(f"- {section}")
                    
                    # Keyword Optimization
                    if improvement_suggestions.get('keyword_optimization'):
                        with st.expander("πŸ”‘ Keyword & ATS Optimization"):
                            st.write("**Missing Industry Keywords:**")
                            for keyword in improvement_suggestions['keyword_optimization'].get('missing_industry_keywords', []):
                                st.markdown(f"- {keyword}")
                            
                            st.write(f"**ATS Compatibility Score:** {improvement_suggestions['keyword_optimization'].get('ats_compatibility_score', 'Not available')}")
                    
                    # Career Positioning
                    if improvement_suggestions.get('career_positioning'):
                        with st.expander("🎯 Career Positioning"):
                            st.write("**Personal Branding Suggestions:**")
                            for branding_suggestion in improvement_suggestions['career_positioning'].get('personal_branding_suggestions', []):
                                st.markdown(f"- {branding_suggestion}")
                            
                            st.write("**Skill Highlighting Recommendations:**")
                            for skill_suggestion in improvement_suggestions['career_positioning'].get('skill_highlighting_recommendations', []):
                                st.markdown(f"- {skill_suggestion}")
                
            except Exception as e:
                    st.error(f"Resume Improvement Analysis Error: {e}")
                    # logger.error(f"Resume Improvement Analysis Error: {e}")


    with tab2:
        st.header("πŸ” Direct Job Search")
        
        # Job Search Parameters

        with st.form(key='job_search_form'):
    # Job Search Parameters
                col1, col2, col3, col4 = st.columns(4)
                
                with col1:
                    site_name = st.multiselect(
                        "Select Job Sites", 
                        ["indeed", "linkedin", "zip_recruiter", "glassdoor", "google"], 
                        default=st.session_state.site_name
                    )

                with col2:
                    search_term = st.text_input("Search Term", st.session_state.search_term)
                
                with col3:
                    location = st.text_input("Location", st.session_state.location)
                
                with col4:
                    results_wanted = st.number_input("Number of Results", min_value=1, max_value=100, value=st.session_state.results_wanted)

                # Additional parameters
                col5, col6 = st.columns(2)
                
                with col5:
                    hours_old = st.number_input("Jobs Posted Within (hours)", min_value=1, max_value=168, value=st.session_state.hours_old)

                with col6:
                    country_indeed = st.text_input("Country (for Indeed)", st.session_state.country_indeed)

                # Submit button inside the form
                submit_button = st.form_submit_button("Search Jobs")

                # Only run search when form is submitted
        if submit_button:
            st.session_state.site_name = site_name
            st.session_state.search_term = search_term
            st.session_state.location = location
            st.session_state.results_wanted = results_wanted
            st.session_state.hours_old = hours_old
            st.session_state.country_indeed = country_indeed

            with st.spinner("Searching Jobs..."):
                try:
                    # Your existing job search code here
                    jobs = scrape_jobs(
                        site_name=site_name,
                        search_term=search_term,
                        google_search_term=f"{search_term} jobs near {location}",
                        location=location,
                        results_wanted=results_wanted,
                        hours_old=hours_old,
                        country_indeed=country_indeed,
                    )
                    st.session_state.job_search_results = jobs

                    if len(jobs) > 0:
                        st.success(f"Found {len(jobs)} jobs")
                        
                        jobs_filtered = jobs[['site', 'job_url', 'title', 'company', 'location', 'date_posted']]
                        jobs_filtered['job_url'] = jobs_filtered['job_url'].apply(make_clickable_link)
                        st.write(jobs_filtered.to_html(escape=False), unsafe_allow_html=True)
                        
                        csv_file = jobs.to_csv(index=False)
                        st.download_button(
                            label="Download Jobs as CSV",
                            data=csv_file,
                            file_name='job_search_results.csv',
                            mime='text/csv'
                        )
                    else:
                        st.warning("No jobs found")
                
                except Exception as e:
                    st.error(f"Job Search Error: {e}")
                    # logger.error(f"Job Search Error: {e}")