File size: 5,467 Bytes
ae4e758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b9119
3489f08
ae4e758
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from gtts import gTTS
import gradio as gr
from PyPDF2 import PdfFileReader
from googletrans import Translator
import googletrans
import numpy as np
import requests
from PIL import Image
import pytesseract 
# from docx import Document

cnt = 0
langues = googletrans.LANGUAGES



API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": "Bearer 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"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()

def get_key(val):
    for key, value in langues.items():
         if val == value:
             return key

def read_article(file_name):

    name = file_name.name.replace("\\",'/')
    file = None
    article = ""
    if name.endswith(".txt"):
        file = open(name, "r")
        filedata = file.readlines()
        for e in filedata :
            article = article + e
    if name.endswith(".pdf"):
        # article = textract.process('document_path.PDF', method='PDFminer')
        document = PdfFileReader(open(name, 'rb'))
        for page in range(document.numPages):
            pageObj = document.getPage(page)
            article += pageObj.extractText().replace('\n','')
    if name.endswith(".docx"):
        pass
        # doc = Document(name)
        # article = None
        # for para in doc.paragraphs:
        #     article = article + para.text
    if name.endswith(".jpg") or name.endswith(".png") or name.endswith(".jpeg"):
        img = Image.open(name)                              
        # path where the tesseract module is installed
        pytesseract.pytesseract.tesseract_cmd ='C:/Program Files (x86)/Tesseract-OCR/tesseract.exe'   
        # converts the image to result and saves it into result variable
        result = pytesseract.image_to_string(img)

    return article

    
def translate_data(text, final_language):
    translator = Translator()
    translation = translator.translate(text, dest=get_key(final_language))
    return translation.text


def generate_summary(file_name, mode,final_language):
    # Step 1 - Read text anc split it
    global cnt
    sentences =  read_article(file_name)
    translator = Translator()
    cnt +=1
    if mode == "traduction":
        text_translate = translate_data(sentences,final_language)
        myobj = gTTS(text=text_translate, lang=get_key(final_language), slow=False) 
        myobj.save(f"audio_traduce{cnt}.wav") 
        return f"audio_traduce{cnt}.wav", text_translate
    elif mode=="lecture":
        text = translator.translate(sentences)
        text_translate = sentences 
        myobj = gTTS(text=text_translate, lang=get_key(final_language), slow=False) 
        myobj.save(f"audio_lecture{cnt}.wav") 
        return f"audio_lecture{cnt}.wav", text_translate
    elif mode == "resume_et_traduire":
        text_translate = query({"inputs": sentences,})
        text_translate = text_translate[0]['summary_text']
        text = translate_data(text_translate,final_language)
        text_translate = text
        myobj = gTTS(text=text, lang=get_key(final_language), slow=False) 
        myobj.save(f"audio_resume_traduire{cnt}.wav") 
        return f"audio_resume_traduire{cnt}.wav", text_translate
    else:
        text_translate = query({"inputs": sentences,})
        text_translate = text_translate[0]['summary_text']
        text = translator.translate(text_translate)
        myobj = gTTS(text=text_translate, lang=text.src, slow=False) 
        myobj.save(f"audio_resume{cnt}.wav") 
        return f"audio_resume{cnt}.wav", text_translate
    


iface = gr.Interface(
    fn=generate_summary, 
    inputs=[
        gr.inputs.File( file_count="single",type="file", label="Fichier à Traduire"), 
        gr.inputs.Radio(['resume', 'traduction','resume_et_traduire','lecture'], label="Choix du mode de fonctionnement"), 
        gr.inputs.Radio(['afrikaans', 'albanian', 'amharic', 'arabic', 'armenian', 'azerbaijani', 
        'basque', 'belarusian', 'bengali', 'bosnian', 'bulgarian', 'catalan', 'cebuano', 'chichewa', 
        'chinese (simplified)', 'chinese (traditional)', 'corsican', 'croatian', 'czech', 'danish', 
        'dutch', 'english', 'esperanto', 'estonian', 'filipino', 'finnish', 'french', 'frisian', 
        'galician', 'georgian', 'german', 'greek', 'gujarati', 'haitian creole', 'hausa', 'hawaiian',
        'hebrew', 'hebrew', 'hindi', 'hmong', 'hungarian', 'icelandic', 'igbo', 'indonesian', 'irish', 
        'italian', 'japanese', 'javanese', 'kannada', 'kazakh', 'khmer', 'korean', 'kurdish (kurmanji)', 
        'kyrgyz', 'lao', 'latin', 'latvian', 'lithuanian', 'luxembourgish', 'macedonian', 'malagasy', 
        'malay', 'malayalam', 'maltese', 'maori', 'marathi', 'mongolian', 'myanmar (burmese)', 'nepali', 
        'norwegian', 'odia', 'pashto', 'persian', 'polish', 'portuguese', 'punjabi', 'romanian', 'russian', 
        'samoan', 'scots gaelic', 'serbian', 'sesotho', 'shona', 'sindhi', 'sinhala', 'slovak', 'slovenian', 
        'somali', 'spanish', 'sundanese', 'swahili', 'swedish', 'tajik', 'tamil', 'telugu', 'thai', 'turkish', 
        'ukrainian', 'urdu', 'uyghur', 'uzbek', 'vietnamese', 'welsh', 'xhosa', 'yiddish', 'yoruba', 'zulu'],label="Langage à traduire")], 
    outputs= [gr.outputs.Audio(type="file", label="Audio du livre")
    ,gr.outputs.Textbox(label="resultat")],
    theme="dark-seafoam")
iface.launch()

# GPS ou GSM qui a le GPS (150k, 15k)