File size: 1,277 Bytes
6c20d85
 
 
 
a30df5d
6c20d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30df5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from PIL import Image
import hopsworks

project = hopsworks.login(project="gana",api_key_value= "YWLlC0yDGD9HteBL.vb39xISRFFFmGTOGqh6SYpDrVYt1OKOUPj0I2PShMBssexiYQIHmclcaMGFj0P49")
fs = project.get_feature_store()

dataset_api = project.get_dataset_api()

dataset_api.download("Resources/images/latest_star.png")
dataset_api.download("Resources/images/actual_star.png")
dataset_api.download("Resources/images/star_df_recent.png")
dataset_api.download("Resources/images/star_confusion_matrix.png")

with gr.Blocks() as demo:
#     with gr.Row():
#       with gr.Column():
#           gr.Label("Today's Predicted Image")
#           input_img = gr.Image("latest_star.png", elem_id="predicted-img")
#       with gr.Column():          
#           gr.Label("Today's Actual Image")
#           input_img = gr.Image("actual_star.png", elem_id="actual-img")        
    with gr.Row():
      with gr.Column():
          gr.Label("Recent Prediction History")
          input_img = gr.Image("star_df_recent.png", elem_id="recent-predictions")
      with gr.Column():          
          gr.Label("Confusion Maxtrix with Historical Prediction Performance")
          input_img = gr.Image("star_confusion_matrix.png", elem_id="confusion-matrix")        

demo.launch()