File size: 1,755 Bytes
40c6d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
test_cases = [
    {
        "predictions": [np.array(a) for a in [
                            [1,1,10,20,30,40,0.85],
                            [1,2,50,60,70,80,0.92],
                            [1,3,80,90,100,110,0.75],
                            [2,1,15,25,35,45,0.78],
                            [2,2,55,65,75,85,0.95],
                            [3,1,20,30,40,50,0.88],
                            [3,2,60,70,80,90,0.82],
                            [4,1,25,35,45,55,0.91],
                            [4,2,65,75,85,95,0.89]
                        ]],
        "references": [np.array(a) for a in [
                            [1, 1, 10, 20, 30, 40],
                            [1, 2, 50, 60, 70, 80],
                            [1, 3, 85, 95, 105, 115],
                            [2, 1, 15, 25, 35, 45],
                            [2, 2, 55, 65, 75, 85],
                            [3, 1, 20, 30, 40, 50],
                            [3, 2, 60, 70, 80, 90],
                            [4, 1, 25, 35, 45, 55],
                            [5, 1, 30, 40, 50, 60],
                            [5, 2, 70, 80, 90, 100]
                        ]],
        "result": {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888,
                    'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
                    'num_unique_objects': 3,'mostly_tracked': 2,
                    'partially_tracked': 1, 'mostly_lost': 0,
                    'num_false_positives': 1, 'num_misses': 2,
                    'num_switches': 0, 'num_fragmentations': 0,
                    'mota': 0.7, 'motp': 0.02981870229007634,
                    'num_transfer': 0, 'num_ascend': 0,
                    'num_migrate': 0}
    },   
]