File size: 14,544 Bytes
ec80aa7
 
 
 
 
28932c1
ec80aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7346895
 
 
 
 
 
ec80aa7
 
7346895
ec80aa7
 
 
 
7346895
 
 
 
 
ec80aa7
 
 
 
 
7346895
 
 
 
ec80aa7
7346895
 
 
 
 
ec80aa7
7346895
ec80aa7
 
 
 
 
 
 
 
 
 
 
 
 
6d36002
ec80aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d36002
 
 
 
 
 
 
 
 
 
 
 
ec80aa7
 
 
 
 
 
 
 
7346895
ec80aa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d36002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec80aa7
6d36002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec80aa7
6d36002
ec80aa7
 
 
 
 
 
 
 
 
 
 
 
 
7346895
ec80aa7
7346895
ec80aa7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

# Create directories first
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception as e:
    print(f"Error downloading requests: {e}")
    # Initialize with empty directory if download fails
    pass

try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception as e:
    print(f"Error downloading results: {e}")
    # Initialize with empty directory if download fails
    pass

# Initialize the leaderboard DataFrame
try:
    LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
except Exception:
    LEADERBOARD_DF = pd.DataFrame(columns=COLS)

# Get evaluation queue status
(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Seleccionar columnas:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn.params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def submit_handler(model, base_model, revision, precision, weight_type, model_type, submit_type, openrouter_key):
    """Manejador unificado para ambos tipos de submit"""
    return add_new_eval(
        model=model,
        base_model=base_model,
        revision=revision,
        precision=precision,
        weight_type=weight_type,
        model_type=model_type,
        submit_type=submit_type,
        openrouter_key=openrouter_key if submit_type == "openrouter" else None
    )

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            # Replace Radio with Tabs
            with gr.Tabs() as submit_tabs:
                # Huggingface Tab
                with gr.TabItem("Huggingface") as huggingface_tab:
                    with gr.Row():
                        with gr.Column():
                            hf_model_name_textbox = gr.Textbox(label="Model name")
                            hf_revision_name_textbox = gr.Textbox(
                                label="Revision commit", 
                                placeholder="main"
                            )
                            hf_model_type = gr.Dropdown(
                                choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                                label="Model type",
                                multiselect=False,
                                value=None,
                                interactive=True,
                            )

                        with gr.Column():
                            hf_precision = gr.Dropdown(
                                choices=[i.value.name for i in Precision if i != Precision.Unknown],
                                label="Precision",
                                multiselect=False,
                                value="float16",
                                interactive=True,
                            )
                            hf_weight_type = gr.Dropdown(
                                choices=[i.value.name for i in WeightType],
                                label="Weights type",
                                multiselect=False,
                                value="Original",
                                interactive=True,
                            )
                            hf_base_model_name_textbox = gr.Textbox(
                                label="Base model (for delta or adapter weights)"
                            )
                    
                    hf_submit_button = gr.Button("Submit Huggingface Model")
                    hf_submission_result = gr.Markdown()
                
                # OpenRouter Tab  
                with gr.TabItem("OpenRouter") as openrouter_tab:
                    with gr.Row():
                        with gr.Column():
                            or_model_name_textbox = gr.Textbox(
                                label="OpenRouter Model ID"
                            )
                            # Get available themes from EXAM_QUESTIONS
                            from src.evaluation.questions import EXAM_QUESTIONS
                            
                            # Solución para mostrar solo los labels
                            # Creamos un diccionario auxiliar para mapear los nombres visibles a los valores internos
                            theme_label_to_value = {}
                            theme_labels = ["Todos los temas"]  # Lista de solo labels para mostrar
                            theme_values = [None]  # Lista de valores correspondientes (misma posición)
                            
                            # Rellenamos las listas de labels y values en el mismo orden
                            for theme, questions in EXAM_QUESTIONS.items():
                                if questions:
                                    original_theme = questions[0]["theme"]
                                    theme_labels.append(original_theme)  # Solo nombre legible
                                    theme_values.append(theme)  # Valor interno
                                    theme_label_to_value[original_theme] = theme  # Para mapeo
                            
                            # Función para convertir de label a value cuando se selecciona
                            def convert_theme_selection(label):
                                if label == "Todos los temas" or label is None:
                                    return None
                                return theme_label_to_value.get(label)
                            
                            or_theme = gr.Dropdown(
                                choices=theme_labels,  # Solo mostramos los labels
                                label="Tema del examen (opcional, por defecto todos)",
                                multiselect=False,
                                interactive=True,
                                value=None
                            )
                            or_model_type = gr.Dropdown(
                                choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                                label="Model type",
                                multiselect=False,
                                value=None,
                                interactive=True,
                            )

                        with gr.Column():
                            or_api_key = gr.Textbox(
                                label="OpenRouter API Key", 
                                type="password"
                            )
                    
                    or_submit_button = gr.Button("Submit OpenRouter Model")
                    or_submission_result = gr.Markdown()
            
            # Replace old submit handler with individual handlers for each tab
            def hf_submit_handler(model, base_model, revision, precision, weight_type, model_type):
                return add_new_eval(
                    model=model,
                    base_model=base_model,
                    revision=revision,
                    precision=precision,
                    weight_type=weight_type,
                    model_type=model_type,
                    submit_type="huggingface",
                    openrouter_key=None
                )
                
            def or_submit_handler(model, model_type, openrouter_key, theme_label=None, progress=gr.Progress()):
                """OpenRouter submission handler with progress indicator"""
                # Convertir el label seleccionado al value correspondiente
                theme_value = convert_theme_selection(theme_label)
                
                # Pass theme as parameter to run_exam function via do_exam.py
                return add_new_eval(
                    model=model,
                    base_model="",
                    revision="openrouter",
                    precision="float16",  # Default for API models
                    weight_type="Original",
                    model_type=model_type,
                    submit_type="openrouter",
                    openrouter_key=openrouter_key,
                    exam_theme=theme_value,  # Pasar el valor interno, no el label
                    progress=progress,  # Añadir el indicador de progreso
                    leaderboard_component=leaderboard  # Pasar la referencia al componente leaderboard
                )
                
            # Connect handlers to buttons
            hf_submit_button.click(
                hf_submit_handler,
                inputs=[
                    hf_model_name_textbox,
                    hf_base_model_name_textbox,
                    hf_revision_name_textbox,
                    hf_precision,
                    hf_weight_type,
                    hf_model_type,
                ],
                outputs=hf_submission_result,
            )
            
            or_submit_button.click(
                or_submit_handler,
                inputs=[
                    or_model_name_textbox,
                    or_model_type,
                    or_api_key,
                    or_theme,
                ],
                outputs=or_submission_result,
            )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

demo.queue(default_concurrency_limit=40).launch()