Spaces:
Running
Running
File size: 14,544 Bytes
ec80aa7 28932c1 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 6d36002 ec80aa7 6d36002 ec80aa7 7346895 ec80aa7 6d36002 ec80aa7 6d36002 ec80aa7 6d36002 ec80aa7 7346895 ec80aa7 7346895 ec80aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import os
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
# Create directories first
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Error downloading requests: {e}")
# Initialize with empty directory if download fails
pass
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception as e:
print(f"Error downloading results: {e}")
# Initialize with empty directory if download fails
pass
# Initialize the leaderboard DataFrame
try:
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
except Exception:
LEADERBOARD_DF = pd.DataFrame(columns=COLS)
# Get evaluation queue status
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Seleccionar columnas:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def submit_handler(model, base_model, revision, precision, weight_type, model_type, submit_type, openrouter_key):
"""Manejador unificado para ambos tipos de submit"""
return add_new_eval(
model=model,
base_model=base_model,
revision=revision,
precision=precision,
weight_type=weight_type,
model_type=model_type,
submit_type=submit_type,
openrouter_key=openrouter_key if submit_type == "openrouter" else None
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
# Replace Radio with Tabs
with gr.Tabs() as submit_tabs:
# Huggingface Tab
with gr.TabItem("Huggingface") as huggingface_tab:
with gr.Row():
with gr.Column():
hf_model_name_textbox = gr.Textbox(label="Model name")
hf_revision_name_textbox = gr.Textbox(
label="Revision commit",
placeholder="main"
)
hf_model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
hf_precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
hf_weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
hf_base_model_name_textbox = gr.Textbox(
label="Base model (for delta or adapter weights)"
)
hf_submit_button = gr.Button("Submit Huggingface Model")
hf_submission_result = gr.Markdown()
# OpenRouter Tab
with gr.TabItem("OpenRouter") as openrouter_tab:
with gr.Row():
with gr.Column():
or_model_name_textbox = gr.Textbox(
label="OpenRouter Model ID"
)
# Get available themes from EXAM_QUESTIONS
from src.evaluation.questions import EXAM_QUESTIONS
# Solución para mostrar solo los labels
# Creamos un diccionario auxiliar para mapear los nombres visibles a los valores internos
theme_label_to_value = {}
theme_labels = ["Todos los temas"] # Lista de solo labels para mostrar
theme_values = [None] # Lista de valores correspondientes (misma posición)
# Rellenamos las listas de labels y values en el mismo orden
for theme, questions in EXAM_QUESTIONS.items():
if questions:
original_theme = questions[0]["theme"]
theme_labels.append(original_theme) # Solo nombre legible
theme_values.append(theme) # Valor interno
theme_label_to_value[original_theme] = theme # Para mapeo
# Función para convertir de label a value cuando se selecciona
def convert_theme_selection(label):
if label == "Todos los temas" or label is None:
return None
return theme_label_to_value.get(label)
or_theme = gr.Dropdown(
choices=theme_labels, # Solo mostramos los labels
label="Tema del examen (opcional, por defecto todos)",
multiselect=False,
interactive=True,
value=None
)
or_model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
or_api_key = gr.Textbox(
label="OpenRouter API Key",
type="password"
)
or_submit_button = gr.Button("Submit OpenRouter Model")
or_submission_result = gr.Markdown()
# Replace old submit handler with individual handlers for each tab
def hf_submit_handler(model, base_model, revision, precision, weight_type, model_type):
return add_new_eval(
model=model,
base_model=base_model,
revision=revision,
precision=precision,
weight_type=weight_type,
model_type=model_type,
submit_type="huggingface",
openrouter_key=None
)
def or_submit_handler(model, model_type, openrouter_key, theme_label=None, progress=gr.Progress()):
"""OpenRouter submission handler with progress indicator"""
# Convertir el label seleccionado al value correspondiente
theme_value = convert_theme_selection(theme_label)
# Pass theme as parameter to run_exam function via do_exam.py
return add_new_eval(
model=model,
base_model="",
revision="openrouter",
precision="float16", # Default for API models
weight_type="Original",
model_type=model_type,
submit_type="openrouter",
openrouter_key=openrouter_key,
exam_theme=theme_value, # Pasar el valor interno, no el label
progress=progress, # Añadir el indicador de progreso
leaderboard_component=leaderboard # Pasar la referencia al componente leaderboard
)
# Connect handlers to buttons
hf_submit_button.click(
hf_submit_handler,
inputs=[
hf_model_name_textbox,
hf_base_model_name_textbox,
hf_revision_name_textbox,
hf_precision,
hf_weight_type,
hf_model_type,
],
outputs=hf_submission_result,
)
or_submit_button.click(
or_submit_handler,
inputs=[
or_model_name_textbox,
or_model_type,
or_api_key,
or_theme,
],
outputs=or_submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |