File size: 6,153 Bytes
eea614c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268ddb9
eea614c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268ddb9
 
 
 
 
 
 
 
 
eea614c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import numpy as np
import torch
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator
from diffusers import (
    UniPCMultistepScheduler,
    FlaxStableDiffusionControlNetPipeline,
    FlaxControlNetModel,
)

import colorsys

sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
device = "cpu"


sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
mask_generator = SamAutomaticMaskGenerator(sam)


controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
    "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32
)

pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    revision="flax",
    dtype=jnp.bfloat16,
)

params["controlnet"] = controlnet_params
p_params = replicate(params)


with gr.Blocks() as demo:
    gr.Markdown("# WildSynth: Synthetic Wildlife Data Generation")
    gr.Markdown(
        """
        ### About
        We have trained a JAX ControlNet model for semantic segmentation on Wildlife Animal Images.
        
        For the training data creation we used the [Wildlife Animals Images](https://www.kaggle.com/datasets/anshulmehtakaggl/wildlife-animals-images) dataset.
        We created segmentation masks with the help of [Grounded SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) where we used the animals names 
        as input prompts for detection and more accurate segmentation.
        
        ### How To Use
        
    """
    )
    with gr.Row():
        input_img = gr.Image(label="Input")
        mask_img = gr.Image(label="Mask", interactive=False)
        output_img = gr.Image(label="Output", interactive=False)

    with gr.Row():
        prompt_text = gr.Textbox(lines=1, label="Prompt")
        negative_prompt_text = gr.Textbox(lines=1, label="Negative Prompt")

    with gr.Row():
        submit = gr.Button("Submit")
        clear = gr.Button("Clear")

    def generate_mask(image, evt: gr.SelectData):
        predictor.set_image(image)
        input_point = np.array([120, 21])
        input_label = np.ones(input_point.shape[0])
        mask, _, _ = predictor.predict(
            point_coords=input_point,
            point_labels=input_label,
            multimask_output=False,
        )

        # clear torch cache
        torch.cuda.empty_cache()
        mask = Image.fromarray(mask[0, :, :])
        segs = mask_generator.generate(image)
        boolean_masks = [s["segmentation"] for s in segs]
        finseg = np.zeros(
            (boolean_masks[0].shape[0], boolean_masks[0].shape[1], 3), dtype=np.uint8
        )
        # Loop over the boolean masks and assign a unique color to each class
        for class_id, boolean_mask in enumerate(boolean_masks):
            hue = class_id * 1.0 / len(boolean_masks)
            rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(hue, 1, 1))
            rgb_mask = np.zeros(
                (boolean_mask.shape[0], boolean_mask.shape[1], 3), dtype=np.uint8
            )
            rgb_mask[:, :, 0] = boolean_mask * rgb[0]
            rgb_mask[:, :, 1] = boolean_mask * rgb[1]
            rgb_mask[:, :, 2] = boolean_mask * rgb[2]
            finseg += rgb_mask

        torch.cuda.empty_cache()

        return mask, finseg

    def infer(
        image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4
    ):
        try:
            rng = jax.random.PRNGKey(int(seed))
            num_inference_steps = int(num_inference_steps)
            image = Image.fromarray(image, mode="RGB")
            num_samples = max(jax.device_count(), int(num_samples))
            p_rng = jax.random.split(rng, jax.device_count())

            prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)
            negative_prompt_ids = pipe.prepare_text_inputs(
                [negative_prompts] * num_samples
            )
            processed_image = pipe.prepare_image_inputs([image] * num_samples)

            prompt_ids = shard(prompt_ids)
            negative_prompt_ids = shard(negative_prompt_ids)
            processed_image = shard(processed_image)

            output = pipe(
                prompt_ids=prompt_ids,
                image=processed_image,
                params=p_params,
                prng_seed=p_rng,
                num_inference_steps=num_inference_steps,
                neg_prompt_ids=negative_prompt_ids,
                jit=True,
            ).images

            del negative_prompt_ids
            del processed_image
            del prompt_ids

            output = output.reshape((num_samples,) + output.shape[-3:])
            final_image = [np.array(x * 255, dtype=np.uint8) for x in output]
            print(output.shape)
            del output

        except Exception as e:
            print("Error: " + str(e))
            final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples
        finally:
            gc.collect()
            return final_image

    def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg):
        img = None
        mask = None
        seg = None
        out = None
        prompt = ""
        neg_prompt = ""
        bg = False
        return img, mask, seg, out, prompt, neg_prompt, bg

    input_img.change(
        generate_mask,
        inputs=[input_img],
        outputs=[mask_img],
    )
    submit.click(
        infer,
        inputs=[mask_img, prompt_text, negative_prompt_text],
        outputs=[output_img],
    )
    clear.click(
        _clear,
        inputs=[
            input_img,
            mask_img,
            output_img,
            prompt_text,
            negative_prompt_text,
        ],
        outputs=[
            input_img,
            mask_img,
            output_img,
            prompt_text,
            negative_prompt_text,
        ],
    )

if __name__ == "__main__":
    demo.queue()
    demo.launch()