File size: 2,692 Bytes
e395ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
def deg2rad(deg):
    return deg*np.pi/180

def inv_RT(RT):
    # RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0)
    RT_inv = np.linalg.inv(RT)

    return RT_inv[:3, :]
def camNormal2worldNormal(rot_c2w, camNormal):
    H,W,_ = camNormal.shape
    normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])

    return normal_img

def worldNormal2camNormal(rot_w2c, normal_map_world):
    H,W,_ = normal_map_world.shape
    # normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])

    # faster version
    # Reshape the normal map into a 2D array where each row represents a normal vector
    normal_map_flat = normal_map_world.reshape(-1, 3)

    # Transform the normal vectors using the transformation matrix
    normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T)

    # Reshape the transformed normal map back to its original shape
    normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape)

    return normal_map_camera

def trans_normal(normal, RT_w2c, RT_w2c_target):

    # normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
    # normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)

    relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
    return worldNormal2camNormal(relative_RT[:3,:3], normal)

def trans_normal_complex(normal, RT_w2c, RT_w2c_rela_to_cond):
    # camview -> world -> condview
    normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
    # debug_normal_world = normal2img(normal_world) 
    
    # relative_RT = np.matmul(RT_w2c_rela_to_cond[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
    normal_target_cam = worldNormal2camNormal(RT_w2c_rela_to_cond[:3,:3], normal_world)
    # normal_condview = normal2img(normal_target_cam) 
    return normal_target_cam
def img2normal(img):
    return (img/255.)*2-1

def normal2img(normal):
    return np.uint8((normal*0.5+0.5)*255)

def norm_normalize(normal, dim=-1):

    normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)

    return normal

def plot_grid_images(images, row, col, path=None):
    import cv2
    """

    Args:

        images: np.array [B, H, W, 3]

        row:

        col:

        save_path:



    Returns:



    """
    images = images.detach().cpu().numpy()
    assert row * col == images.shape[0]
    images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)])
    if path:
        cv2.imwrite(path, images[:,:,::-1] * 255)
    return images