File size: 25,089 Bytes
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8fb9b
c5ed230
 
3b8fb9b
 
 
 
 
c5ed230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
<div class="title" align=center>
    <h1>vits-simple-api</h1>
	<div>Simply call the vits api</div>
    <br/>
    <br/>
    <p>
        <img src="https://img.shields.io/github/license/Artrajz/vits-simple-api">
    	<img src="https://img.shields.io/badge/python-3.9%7C3.10-green">
        <a href="https://hub.docker.com/r/artrajz/vits-simple-api">
            <img src="https://img.shields.io/docker/pulls/artrajz/vits-simple-api"></a>
    </p>
        <a href="https://github.com/Artrajz/vits-simple-api/blob/main/README.md">English</a>|<a href="https://github.com/Artrajz/vits-simple-api/blob/main/README_zh.md">中文文档</a>
    <br/>
</div>




# Feature

- [x] VITS语音合成
- [x] VITS语音转换
- [x] HuBert-soft VITS模型
- [x] W2V2 VITS / emotional-vits维度情感模型
- [x] 加载多模型
- [x] 自动识别语言并处理,根据模型的cleaner设置语言类型识别的范围,支持自定义语言类型范围
- [x] 自定义默认参数
- [x] 长文本批处理
- [x] GPU加速推理
- [x] SSML语音合成标记语言(完善中...)

<details><summary>Update Logs</summary><pre><code>
<h2>2023.5.24</h2>
<p>添加dimensional_emotion api,从文件夹加载多个npy文件,Docker添加了Linux/ARM64和Linux/ARM64/v8平台</p>
<h2>2023.5.15</h2>
<p>增加english_cleaner,需要额外安装espeak才能使用</p>
<h2>2023.5.12</h2>
<p>增加ssml支持,但仍需完善。重构部分功能,hubert_vits中的speaker_id改为id</p>
<h2>2023.5.2</h2>
<p>增加w2v2-vits/emotional-vits模型支持,修改了speakers映射表并添加了对应模型支持的语言</p>
<h2>2023.4.23</h2>
<p>增加api key鉴权,默认禁用,需要在config.py中启用</p>
<h2>2023.4.17</h2>
<p>修改单语言的cleaner需要标注才会clean,增加GPU加速推理,但需要手动安装gpu推理环境</p>
<h2>2023.4.12</h2>
<p>项目由MoeGoe-Simple-API更名为vits-simple-api,支持长文本批处理,增加长文本分段阈值max</p>
<h2>2023.4.7</h2>
<p>增加配置文件可自定义默认参数,本次更新需要手动更新config.py,具体使用方法见config.py</p>
<h2>2023.4.6</h2>
<p>加入自动识别语种选项auto,lang参数默认修改为auto,自动识别仍有一定缺陷,请自行选择</p>
<p>统一POST请求类型为multipart/form-data</p>
</code></pre></details>


## demo

[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Artrajz/vits-simple-api)


- `https://artrajz-vits-simple-api.hf.space/voice/vits?text=你好,こんにちは&id=164`
- 激动:`https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=111`
- 小声:`https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=2077`

https://user-images.githubusercontent.com/73542220/237995061-c1f25b4e-dd86-438a-9363-4bb1fe65b425.mov

# 部署

## Docker部署

### 镜像拉取脚本

```
bash -c "$(wget -O- https://raw.githubusercontent.com/Artrajz/vits-simple-api/main/vits-simple-api-installer-latest.sh)"
```

- 目前docker镜像支持的平台`linux/amd64,linux/arm64`
- 在拉取完成后,需要导入VITS模型才能使用,请根据以下步骤导入模型。

### 下载VITS模型

将模型放入`/usr/local/vits-simple-api/Model`

<details><summary>Folder structure</summary><pre><code>
│  hubert-soft-0d54a1f4.pt
│  model.onnx
│  model.yaml
├─g
│      config.json
│      G_953000.pth

├─louise
│      360_epochs.pth
│      config.json
│
├─Nene_Nanami_Rong_Tang
│      1374_epochs.pth
│      config.json
│
├─Zero_no_tsukaima
│       1158_epochs.pth
│       config.json

└─npy
       25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
       all_emotions.npy
</code></pre></details>



### 修改模型路径

Modify in  `/usr/local/vits-simple-api/config.py` 

<details><summary>config.py</summary><pre><code>
# 在此填写模型路径
MODEL_LIST = [
    # VITS
    [ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
    [ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
    [ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
    # HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
    [ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
    # W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
    [ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft 编码器
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# 加载单独的npy: ABS_PATH+"/all_emotions.npy
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# 从文件夹里加载npy: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
</code></pre></details>



### 启动

`docker compose up -d`

或者重新执行拉取脚本

### 镜像更新

重新执行docker镜像拉取脚本即可

## 虚拟环境部署

### Clone

`git clone https://github.com/Artrajz/vits-simple-api.git`

###  下载python依赖

推荐使用python的虚拟环境,python版本 >= 3.9

`pip install -r requirements.txt`

windows下可能安装不了fasttext,可以用以下命令安装,附[wheels下载地址](https://www.lfd.uci.edu/~gohlke/pythonlibs/#fasttext)

```
#python3.10 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp310-cp310-win_amd64.whl
#python3.9 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp39-cp39-win_amd64.whl
```

### 下载VITS模型

将模型放入 `/path/to/vits-simple-api/Model`

<details><summary>文件夹结构</summary><pre><code>
├─g
│      config.json
│      G_953000.pth

├─louise
│      360_epochs.pth
│      config.json
│      hubert-soft-0d54a1f4.pt
│
├─Nene_Nanami_Rong_Tang
│      1374_epochs.pth
│      config.json
│
└─Zero_no_tsukaima
        1158_epochs.pth
        config.json
</code></pre></details>

### 修改模型路径`/path/to/vits-simple-api/config.py` 修改

<details><summary>config.py</summary><pre><code>
# 在此填写模型路径
MODEL_LIST = [
    # VITS
    [ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
    [ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
    [ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
    # HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
    [ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
    # W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
    [ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft 编码器
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# 加载单独的npy: ABS_PATH+"/all_emotions.npy
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# 从文件夹里加载npy: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
</code></pre></details>



### 启动

`python app.py`

# GPU 加速

## windows

### 安装CUDA

查看显卡最高支持CUDA的版本

```
nvidia-smi
```

以CUDA11.7为例,[官网](https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exe_local)

### 安装GPU版pytorch

CUDA11.7对应的pytorch是用这个命令安装

```
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```

对应版本的命令可以在[官网](https://pytorch.org/get-started/locally/)找到

## Linux

安装过程类似,但我没有相应的环境所以没办法测试

# Openjtalk安装问题

如果你是arm64架构的平台,由于pypi官网上没有arm64对应的whl,可能安装会出现一些问题,你可以使用我构建的whl来安装

```
pip install openjtalk==0.3.0.dev2 --index-url https://pypi.artrajz.cn/simple
```

或者是自己手动构建一个whl,可以根据[教程](https://artrajz.cn/index.php/archives/167/)来构建

# API

## GET

#### speakers list 

- GET http://127.0.0.1:23456/voice/speakers

  返回id对应角色的映射表

#### voice vits

- GET http://127.0.0.1/voice?text=text

  其他参数不指定时均为默认值

- GET http://127.0.0.1/voice?text=[ZH]text[ZH][JA]text[JA]&lang=mix

  lang=mix时文本要标注

- GET http://127.0.0.1/voice?text=text&id=142&format=wav&lang=zh&length=1.4

  文本为text,角色id为142,音频格式为wav,文本语言为zh,语音长度为1.4,其余参数默认

#### check

- GET http://127.0.0.1:23456/voice/check?id=0&model=vits

## POST

- python

```python
import re
import requests
import os
import random
import string
from requests_toolbelt.multipart.encoder import MultipartEncoder

abs_path = os.path.dirname(__file__)
base = "http://127.0.0.1:23456"


# 映射表
def voice_speakers():
    url = f"{base}/voice/speakers"

    res = requests.post(url=url)
    json = res.json()
    for i in json:
        print(i)
        for j in json[i]:
            print(j)
    return json


# 语音合成 voice vits
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50):
    fields = {
        "text": text,
        "id": str(id),
        "format": format,
        "lang": lang,
        "length": str(length),
        "noise": str(noise),
        "noisew": str(noisew),
        "max": str(max)
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 语音转换 hubert-vits
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
            "id": str(id),
            "format": format,
            "length": str(length),
            "noise": str(noise),
            "noisew": str(noisew),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

        m = MultipartEncoder(fields=fields, boundary=boundary)
        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/hubert-vits"

        res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 维度情感模型 w2v2-vits
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0):
    fields = {
        "text": text,
        "id": str(id),
        "format": format,
        "lang": lang,
        "length": str(length),
        "noise": str(noise),
        "noisew": str(noisew),
        "max": str(max),
        "emotion": str(emotion)
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice/w2v2-vits"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


# 语音转换 同VITS模型内角色之间的音色转换
def voice_conversion(upload_path, original_id, target_id):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
            "original_id": str(original_id),
            "target_id": str(target_id),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
        m = MultipartEncoder(fields=fields, boundary=boundary)

        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/conversion"

        res = requests.post(url=url, data=m, headers=headers)

    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path


def voice_ssml(ssml):
    fields = {
        "ssml": ssml,
    }
    boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

    m = MultipartEncoder(fields=fields, boundary=boundary)
    headers = {"Content-Type": m.content_type}
    url = f"{base}/voice/ssml"

    res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path

def voice_dimensional_emotion(upload_path):
    upload_name = os.path.basename(upload_path)
    upload_type = f'audio/{upload_name.split(".")[1]}'  # wav,ogg

    with open(upload_path, 'rb') as upload_file:
        fields = {
            "upload": (upload_name, upload_file, upload_type),
        }
        boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))

        m = MultipartEncoder(fields=fields, boundary=boundary)
        headers = {"Content-Type": m.content_type}
        url = f"{base}/voice/dimension-emotion"

        res = requests.post(url=url, data=m, headers=headers)
    fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
    path = f"{abs_path}/{fname}"

    with open(path, "wb") as f:
        f.write(res.content)
    print(path)
    return path
```

## API KEY

在config.py中设置`API_KEY_ENABLED = True`以启用,api key填写:`API_KEY = "api-key"`。

启用后,GET请求中使用需要增加参数api_key,POST请求中使用需要在header中添加参数`X-API-KEY`。

# Parameter

## VITS语音合成

| Name          | Parameter | Is must | Default | Type  | Instruction                                                  |
| ------------- | --------- | ------- | ------- | ----- | ------------------------------------------------------------ |
| 合成文本      | text      | true    |         | str   |                                                              |
| 角色id        | id        | false   | 0       | int   |                                                              |
| 音频格式      | format    | false   | wav     | str   | wav,ogg,silk                                                 |
| 文本语言      | lang      | false   | auto    | str   | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 |
| 语音长度/语速 | length    | false   | 1.0     | float | 调节语音长度,相当于调节语速,该数值越大语速越慢             |
| 噪声          | noise     | false   | 0.667   | float |                                                              |
| 噪声偏差      | noisew    | false   | 0.8     | float |                                                              |
| 分段阈值      | max       | false   | 50      | int   | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 |

## VITS 语音转换

| Name       | Parameter   | Is must | Default | Type | Instruction            |
| ---------- | ----------- | ------- | ------- | ---- | ---------------------- |
| 上传音频   | upload      | true    |         | file | wav or ogg             |
| 源角色id   | original_id | true    |         | int  | 上传文件所使用的角色id |
| 目标角色id | target_id   | true    |         | int  | 要转换的目标角色id     |

## HuBert-VITS 语音转换

| Name          | Parameter | Is must | Default | Type  | Instruction                                      |
| ------------- | --------- | ------- | ------- | ----- | ------------------------------------------------ |
| 上传音频      | upload    | true    |         | file  |                                                  |
| 目标角色id    | id        | true    |         | int   |                                                  |
| 音频格式      | format    | true    |         | str   | wav,ogg,silk                                     |
| 语音长度/语速 | length    | true    |         | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 |
| 噪声          | noise     | true    |         | float |                                                  |
| 噪声偏差      | noisew    | true    |         | float |                                                  |

## Dimensional emotion

| Name     | Parameter | Is must | Default | Type | Instruction                   |
| -------- | --------- | ------- | ------- | ---- | ----------------------------- |
| 上传音频 | upload    | true    |         | file | 返回存储维度情感向量的npy文件 |

## W2V2-VITS

| Name          | Parameter | Is must | Default | Type  | Instruction                                                  |
| ------------- | --------- | ------- | ------- | ----- | ------------------------------------------------------------ |
| 合成文本      | text      | true    |         | str   |                                                              |
| 角色id        | id        | false   | 0       | int   |                                                              |
| 音频格式      | format    | false   | wav     | str   | wav,ogg,silk                                                 |
| 文本语言      | lang      | false   | auto    | str   | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 |
| 语音长度/语速 | length    | false   | 1.0     | float | 调节语音长度,相当于调节语速,该数值越大语速越慢             |
| 噪声          | noise     | false   | 0.667   | float |                                                              |
| 噪声偏差      | noisew    | false   | 0.8     | float |                                                              |
| 分段阈值      | max       | false   | 50      | int   | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 |
| 维度情感      | emotion   | false   | 0       | int   | 范围取决于npy情感参考文件,如[innnky](https://huggingface.co/spaces/innnky/nene-emotion/tree/main)的all_emotions.npy模型范围是0-5457 |

## SSML语音合成标记语言
目前支持的元素与属性

`speak`元素

| Attribute | Description                                                  | Is must |
| --------- | ------------------------------------------------------------ | ------- |
| id        | 默认值从`config.py`中读取                                    | false   |
| lang      | 默认值从`config.py`中读取                                    | false   |
| length    | 默认值从`config.py`中读取                                    | false   |
| noise     | 默认值从`config.py`中读取                                    | false   |
| noisew    | 默认值从`config.py`中读取                                    | false   |
| max       | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false   |
| model     | 默认为vits,可选`w2v2-vits``emotion-vits`                  | false   |
| emotion   | 只有用`w2v2-vits``emotion-vits``emotion`才生效,范围取决于npy情感参考文件 | false   |

`voice`元素

优先级大于`speak`

| Attribute | Description                                                  | Is must |
| --------- | ------------------------------------------------------------ | ------- |
| id        | 默认值从`config.py`中读取                                    | false   |
| lang      | 默认值从`config.py`中读取                                    | false   |
| length    | 默认值从`config.py`中读取                                    | false   |
| noise     | 默认值从`config.py`中读取                                    | false   |
| noisew    | 默认值从`config.py`中读取                                    | false   |
| max       | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false   |
| model     | 默认为vits,可选`w2v2-vits``emotion-vits`                  | false   |
| emotion   | 只有用`w2v2-vits``emotion-vits``emotion`才会生效         | false   |

`break`元素

| Attribute | Description                                                  | Is must |
| --------- | ------------------------------------------------------------ | ------- |
| strength  | x-weak,weak,medium(默认值),strong,x-strong                 | false   |
| time      | 暂停的绝对持续时间,以秒为单位(例如 `2s`)或以毫秒为单位(例如 `500ms`)。 有效值的范围为 0 到 5000 毫秒。 如果设置的值大于支持的最大值,则服务将使用 `5000ms`。 如果设置了 `time` 属性,则会忽略 `strength` 属性。 | false   |

| Strength | Relative Duration |
| :------- | :---------------- |
| x-weak   | 250 毫秒          |
| weak     | 500 毫秒          |
| Medium   | 750 毫秒          |
| Strong   | 1000 毫秒         |
| x-strong | 1250 毫秒         |

示例

```xml
<speak lang="zh" format="mp3" length="1.2">
    <voice id="92" >这几天心里颇不宁静。</voice>
    <voice id="125">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice>
    <voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice>
    <voice id="98">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice>
    <voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/>
    <voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice>
    <voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice>
    <voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice>
    <voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice>
    <voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice>
    <voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/>
    <voice id="127">路上只我一个人,背着手踱着。</voice>
    <voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice>
    <voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice>
    <voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice>
    <voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice>
    <voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice>
</speak>
```

# 交流平台

现在只有 [Q群](https://qm.qq.com/cgi-bin/qm/qr?k=-1GknIe4uXrkmbDKBGKa1aAUteq40qs_&jump_from=webapi&authKey=x5YYt6Dggs1ZqWxvZqvj3fV8VUnxRyXm5S5Kzntc78+Nv3iXOIawplGip9LWuNR/)

# 鸣谢

- vits:https://github.com/jaywalnut310/vits
- MoeGoe:https://github.com/CjangCjengh/MoeGoe
- emotional-vits:https://github.com/innnky/emotional-vits
- vits-uma-genshin-honkai:https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai