File size: 20,229 Bytes
929cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""
Enhanced visualization for topic modeling analysis results
"""
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np

def create_topic_visualization(analysis_results):
    """
    Create enhanced visualizations for topic modeling analysis results
    
    Args:
        analysis_results (dict): Analysis results from the topic modeling analysis
        
    Returns:
        list: List of gradio components with visualizations
    """
    # Initialize output components list
    output_components = []
    
    # Check if we have valid results
    if not analysis_results or "analyses" not in analysis_results:
        return [gr.Markdown("No analysis results found.")]
    
    # Process each prompt
    for prompt, analyses in analysis_results["analyses"].items():
        # Process Topic Modeling analysis if available
        if "topic_modeling" in analyses:
            topic_results = analyses["topic_modeling"]
            
            # Enhanced error checking and messaging
            if "error" in topic_results:
                output_components.append(gr.Markdown(f"## ⚠️ Topic Modeling Error"))
                output_components.append(gr.Markdown(f"Error: {topic_results['error']}"))
                output_components.append(gr.Markdown("Suggestions:"))
                output_components.append(gr.Markdown("1. Try with longer text samples - topic modeling typically needs 100+ words per document"))
                output_components.append(gr.Markdown("2. Reduce the number of topics (2-3 for short texts)"))
                output_components.append(gr.Markdown("3. Try the Bag of Words or N-gram analysis for shorter texts"))
                continue
            
            # Show method and number of topics
            method = topic_results.get("method", "lda").upper()
            n_topics = topic_results.get("n_topics", 3)
            
            # Check if n_topics was adjusted
            if "adjusted_n_topics" in topic_results and topic_results["adjusted_n_topics"] != topic_results.get("original_n_topics", n_topics):
                output_components.append(gr.Markdown(
                    f"## Topic Modeling Analysis ({method}, {topic_results['adjusted_n_topics']} topics) " +
                    f"*Adjusted from {topic_results['original_n_topics']} due to limited text content*"
                ))
                n_topics = topic_results["adjusted_n_topics"]
            else:
                output_components.append(gr.Markdown(f"## Topic Modeling Analysis ({method}, {n_topics} topics)"))
            
            # Check for warnings
            if "warnings" in topic_results:
                if isinstance(topic_results["warnings"], list):
                    for warning in topic_results["warnings"]:
                        output_components.append(gr.Markdown(f"⚠️ **Warning**: {warning}"))
                else:
                    output_components.append(gr.Markdown(f"⚠️ **Warning**: {topic_results['warnings']}"))
            
            if "warning" in topic_results:
                output_components.append(gr.Markdown(f"⚠️ **Warning**: {topic_results['warning']}"))
            
            # Show models being compared
            models = topic_results.get("models", [])
            if len(models) >= 2:
                output_components.append(gr.Markdown(f"### Comparing responses from {models[0]} and {models[1]}"))
                
                # Show topic quality metrics if available
                if "coherence_scores" in topic_results:
                    coherence_html = f"""
                    <div style="margin: 20px 0; padding: 15px; background-color: #f8f9fa; border-radius: 5px;">
                    <h4 style="margin-top: 0;">Topic Quality Metrics</h4>
                    <table style="width: 100%; border-collapse: collapse;">
                    <tr>
                        <th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Metric</th>
                        <th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{models[0]}</th>
                        <th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{models[1]}</th>
                        <th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">Combined</th>
                    </tr>
                    <tr>
                        <td style="padding: 8px; border-bottom: 1px solid #ddd;">Topic Coherence</td>
                        <td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
                            {topic_results["coherence_scores"].get(models[0], 0):.2f}
                        </td>
                        <td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
                            {topic_results["coherence_scores"].get(models[1], 0):.2f}
                        </td>
                        <td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
                            {topic_results["coherence_scores"].get("combined", 0):.2f}
                        </td>
                    </tr>
                    <tr>
                        <td style="padding: 8px;">Topic Diversity</td>
                        <td style="text-align: center; padding: 8px;">
                            {topic_results["diversity_scores"].get(models[0], 0):.2f}
                        </td>
                        <td style="text-align: center; padding: 8px;">
                            {topic_results["diversity_scores"].get(models[1], 0):.2f}
                        </td>
                        <td style="text-align: center; padding: 8px;">
                            {topic_results["diversity_scores"].get("combined", 0):.2f}
                        </td>
                    </tr>
                    </table>
                    <p style="margin-bottom: 0; font-size: 0.9em; color: #666;">
                        Higher coherence scores indicate more semantically coherent topics.<br>
                        Higher diversity scores indicate less overlap between topics.
                    </p>
                    </div>
                    """
                    output_components.append(gr.HTML(coherence_html))
                
                # Visualize topics
                topics = topic_results.get("topics", [])
                if topics:
                    output_components.append(gr.Markdown("### Discovered Topics"))
                    
                    # Create a topic word cloud using HTML/CSS for better visibility
                    for topic in topics:
                        topic_id = topic.get("id", 0)
                        words = topic.get("words", [])
                        weights = topic.get("weights", [])
                        
                        if words and weights and len(words) == len(weights):
                            # Generate a word cloud-like div using HTML/CSS
                            word_cloud_html = f"""
                            <div style="margin-bottom: 25px;">
                                <h4 style="margin-bottom: 10px;">Topic {topic_id+1}</h4>
                                <div style="display: flex; flex-wrap: wrap; gap: 10px; background: #f9f9f9; padding: 15px; border-radius: 5px;">
                            """
                            
                            # Sort words by weight for better visualization
                            word_weight_pairs = sorted(zip(words, weights), key=lambda x: x[1], reverse=True)
                            
                            # Add each word with size based on weight
                            for word, weight in word_weight_pairs:
                                # Scale weight to a reasonable font size (min 14px, max 28px)
                                font_size = 14 + min(14, round(weight * 30))
                                # Color based on weight (darker = higher weight)
                                color_intensity = max(0, min(90, int(100 - weight * 100)))
                                color = f"hsl(210, 70%, {color_intensity}%)"
                                
                                word_cloud_html += f"""
                                <span style="font-size: {font_size}px; color: {color}; margin: 3px; 
                                padding: 5px; border-radius: 3px; background: rgba(0,0,0,0.03);">
                                {word}
                                </span>
                                """
                            
                            word_cloud_html += """
                                </div>
                            </div>
                            """
                            
                            output_components.append(gr.HTML(word_cloud_html))
                    
                    # Add a proper bar chart visualization for topic words
                    for topic in topics[:min(3, len(topics))]:  # Show charts for max 3 topics to avoid clutter
                        topic_id = topic.get("id", 0)
                        words = topic.get("words", [])
                        weights = topic.get("weights", [])
                        
                        if words and weights and len(words) == len(weights):
                            # Create dataframe for plotting
                            df = pd.DataFrame({
                                'word': words,
                                'weight': weights
                            })
                            
                            # Sort by weight
                            df = df.sort_values('weight', ascending=False)
                            
                            # Limit to top N words for clarity
                            df = df.head(10)
                            
                            # Create bar chart
                            fig = px.bar(
                                df, x='weight', y='word',
                                title=f"Topic {topic_id+1} Top Words",
                                labels={'word': 'Word', 'weight': 'Weight'},
                                height=300,
                                orientation='h'  # Horizontal bars
                            )
                            
                            # Improve layout
                            fig.update_layout(
                                margin=dict(l=10, r=10, t=40, b=10),
                                yaxis={'categoryorder': 'total ascending'}
                            )
                            
                            output_components.append(gr.Plot(value=fig))
                
                # Visualize topic distributions for each model
                model_topics = topic_results.get("model_topics", {})
                if model_topics and all(model in model_topics for model in models):
                    output_components.append(gr.Markdown("### Topic Distribution by Model"))
                    
                    # Create multi-model topic distribution comparison
                    distribution_data = []
                    for model in models:
                        if model in model_topics:
                            distribution = model_topics[model]
                            for i, weight in enumerate(distribution):
                                if i < 10:  # Limit to 10 topics max
                                    distribution_data.append({
                                        'Model': model,
                                        'Topic': f"Topic {i+1}",
                                        'Weight': weight
                                    })
                    
                    if distribution_data:
                        df = pd.DataFrame(distribution_data)
                        
                        # Create grouped bar chart
                        fig = px.bar(
                            df, x='Topic', y='Weight', color='Model',
                            barmode='group',
                            title="Topic Distribution Comparison",
                            height=400
                        )
                        
                        output_components.append(gr.Plot(value=fig))
                
                # Visualize topic differences as a heatmap
                comparisons = topic_results.get("comparisons", {})
                if comparisons:
                    comparison_key = f"{models[0]} vs {models[1]}"
                    if comparison_key in comparisons:
                        output_components.append(gr.Markdown("### Topic Similarity Analysis"))
                        
                        # Get JS divergence
                        js_divergence = comparisons[comparison_key].get("js_divergence", 0)
                        
                        # Create a divergence meter
                        divergence_html = f"""
                        <div style="margin: 20px 0; padding: 20px; background-color: #f8f9fa; border-radius: 5px; text-align: center;">
                            <h4 style="margin-top: 0;">Topic Distribution Divergence</h4>
                            <div style="display: flex; align-items: center; justify-content: center;">
                                <div style="width: 300px; height: 40px; background: linear-gradient(to right, #1a9850, #ffffbf, #d73027); border-radius: 5px; position: relative; margin: 10px 0;">
                                    <div style="position: absolute; height: 40px; width: 2px; background-color: #000; left: {min(300, max(0, js_divergence * 300))}px;"></div>
                                </div>
                            </div>
                            <div style="display: flex; justify-content: space-between; width: 300px; margin: 0 auto;">
                                <span>Similar (0.0)</span>
                                <span>Different (1.0)</span>
                            </div>
                            <p style="margin-top: 10px; font-weight: bold;">Score: {js_divergence:.3f}</p>
                            <p style="margin-bottom: 0; font-size: 0.9em; color: #666;">
                                Jensen-Shannon Divergence measures the similarity between topic distributions.<br>
                                Lower values indicate more similar topic distributions between models.
                            </p>
                        </div>
                        """
                        
                        output_components.append(gr.HTML(divergence_html))
                        
                        # Create similarity matrix heatmap if available
                        similarity_matrix = topic_results.get("similarity_matrix", [])
                        if similarity_matrix and len(similarity_matrix) > 0:
                            # Convert to format for heatmap
                            z_data = similarity_matrix
                            
                            # Create heatmap
                            fig = go.Figure(data=go.Heatmap(
                                z=z_data,
                                x=[f"{models[1]} Topic {i+1}" for i in range(len(similarity_matrix[0]))],
                                y=[f"{models[0]} Topic {i+1}" for i in range(len(similarity_matrix))],
                                colorscale='Viridis',
                                showscale=True,
                                colorbar=dict(title="Similarity")
                            ))
                            
                            fig.update_layout(
                                title="Topic Similarity Matrix",
                                height=400,
                                margin=dict(l=50, r=50, t=50, b=50)
                            )
                            
                            output_components.append(gr.Plot(value=fig))
                
                # Show best matching topics
                matched_topics = topic_results.get("matched_topics", [])
                if matched_topics:
                    output_components.append(gr.Markdown("### Most Similar Topic Pairs"))
                    
                    # Create HTML table for matched topics
                    matched_topics_html = """
                    <div style="margin: 20px 0;">
                    <table style="width: 100%; border-collapse: collapse;">
                    <tr>
                        <th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Topic Pair</th>
                        <th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Top Words in Model 1</th>
                        <th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Top Words in Model 2</th>
                        <th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: center;">Similarity</th>
                    </tr>
                    """
                    
                    # Sort by similarity, highest first
                    sorted_matches = sorted(matched_topics, key=lambda x: x['similarity'], reverse=True)
                    
                    for match in sorted_matches:
                        # Format words with commas
                        words1 = ", ".join(match["set1_topic_words"][:5])  # Show top 5 words
                        words2 = ", ".join(match["set2_topic_words"][:5])  # Show top 5 words
                        
                        # Calculate color based on similarity (green for high, red for low)
                        similarity = match["similarity"]
                        color = f"hsl({int(120 * similarity)}, 70%, 50%)"
                        
                        matched_topics_html += f"""
                        <tr>
                            <td style="padding: 8px; border-bottom: 1px solid #ddd;">
                                {models[0]} Topic {match['set1_topic_id']+1}{models[1]} Topic {match['set2_topic_id']+1}
                            </td>
                            <td style="padding: 8px; border-bottom: 1px solid #ddd;">{words1}</td>
                            <td style="padding: 8px; border-bottom: 1px solid #ddd;">{words2}</td>
                            <td style="padding: 8px; border-bottom: 1px solid #ddd; text-align: center; font-weight: bold; color: {color};">
                                {similarity:.2f}
                            </td>
                        </tr>
                        """
                    
                    matched_topics_html += """
                    </table>
                    </div>
                    """
                    
                    output_components.append(gr.HTML(matched_topics_html))
    
    # If no components were added, show a message
    if len(output_components) <= 1:
        output_components.append(gr.Markdown("No detailed Topic Modeling analysis found in results."))
    
    return output_components


def process_and_visualize_topic_analysis(analysis_results):
    """
    Process the topic modeling analysis results and create visualization components
    
    Args:
        analysis_results (dict): The analysis results
        
    Returns:
        list: List of gradio components for visualization
    """
    try:
        print(f"Starting visualization of topic modeling analysis results")
        components = create_topic_visualization(analysis_results)
        print(f"Completed topic modeling visualization with {len(components)} components")
        return components
    except Exception as e:
        import traceback
        error_msg = f"Topic modeling visualization error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return [
            gr.Markdown(f"**Error during topic modeling visualization:**"),
            gr.Markdown(f"```\n{str(e)}\n```"),
            gr.Markdown("Try adjusting the number of topics or using longer text inputs.")
        ]