Spaces:
Sleeping
Sleeping
File size: 20,229 Bytes
929cfb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
"""
Enhanced visualization for topic modeling analysis results
"""
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
def create_topic_visualization(analysis_results):
"""
Create enhanced visualizations for topic modeling analysis results
Args:
analysis_results (dict): Analysis results from the topic modeling analysis
Returns:
list: List of gradio components with visualizations
"""
# Initialize output components list
output_components = []
# Check if we have valid results
if not analysis_results or "analyses" not in analysis_results:
return [gr.Markdown("No analysis results found.")]
# Process each prompt
for prompt, analyses in analysis_results["analyses"].items():
# Process Topic Modeling analysis if available
if "topic_modeling" in analyses:
topic_results = analyses["topic_modeling"]
# Enhanced error checking and messaging
if "error" in topic_results:
output_components.append(gr.Markdown(f"## ⚠️ Topic Modeling Error"))
output_components.append(gr.Markdown(f"Error: {topic_results['error']}"))
output_components.append(gr.Markdown("Suggestions:"))
output_components.append(gr.Markdown("1. Try with longer text samples - topic modeling typically needs 100+ words per document"))
output_components.append(gr.Markdown("2. Reduce the number of topics (2-3 for short texts)"))
output_components.append(gr.Markdown("3. Try the Bag of Words or N-gram analysis for shorter texts"))
continue
# Show method and number of topics
method = topic_results.get("method", "lda").upper()
n_topics = topic_results.get("n_topics", 3)
# Check if n_topics was adjusted
if "adjusted_n_topics" in topic_results and topic_results["adjusted_n_topics"] != topic_results.get("original_n_topics", n_topics):
output_components.append(gr.Markdown(
f"## Topic Modeling Analysis ({method}, {topic_results['adjusted_n_topics']} topics) " +
f"*Adjusted from {topic_results['original_n_topics']} due to limited text content*"
))
n_topics = topic_results["adjusted_n_topics"]
else:
output_components.append(gr.Markdown(f"## Topic Modeling Analysis ({method}, {n_topics} topics)"))
# Check for warnings
if "warnings" in topic_results:
if isinstance(topic_results["warnings"], list):
for warning in topic_results["warnings"]:
output_components.append(gr.Markdown(f"⚠️ **Warning**: {warning}"))
else:
output_components.append(gr.Markdown(f"⚠️ **Warning**: {topic_results['warnings']}"))
if "warning" in topic_results:
output_components.append(gr.Markdown(f"⚠️ **Warning**: {topic_results['warning']}"))
# Show models being compared
models = topic_results.get("models", [])
if len(models) >= 2:
output_components.append(gr.Markdown(f"### Comparing responses from {models[0]} and {models[1]}"))
# Show topic quality metrics if available
if "coherence_scores" in topic_results:
coherence_html = f"""
<div style="margin: 20px 0; padding: 15px; background-color: #f8f9fa; border-radius: 5px;">
<h4 style="margin-top: 0;">Topic Quality Metrics</h4>
<table style="width: 100%; border-collapse: collapse;">
<tr>
<th style="text-align: left; padding: 8px; border-bottom: 1px solid #ddd;">Metric</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{models[0]}</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">{models[1]}</th>
<th style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">Combined</th>
</tr>
<tr>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">Topic Coherence</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
{topic_results["coherence_scores"].get(models[0], 0):.2f}
</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
{topic_results["coherence_scores"].get(models[1], 0):.2f}
</td>
<td style="text-align: center; padding: 8px; border-bottom: 1px solid #ddd;">
{topic_results["coherence_scores"].get("combined", 0):.2f}
</td>
</tr>
<tr>
<td style="padding: 8px;">Topic Diversity</td>
<td style="text-align: center; padding: 8px;">
{topic_results["diversity_scores"].get(models[0], 0):.2f}
</td>
<td style="text-align: center; padding: 8px;">
{topic_results["diversity_scores"].get(models[1], 0):.2f}
</td>
<td style="text-align: center; padding: 8px;">
{topic_results["diversity_scores"].get("combined", 0):.2f}
</td>
</tr>
</table>
<p style="margin-bottom: 0; font-size: 0.9em; color: #666;">
Higher coherence scores indicate more semantically coherent topics.<br>
Higher diversity scores indicate less overlap between topics.
</p>
</div>
"""
output_components.append(gr.HTML(coherence_html))
# Visualize topics
topics = topic_results.get("topics", [])
if topics:
output_components.append(gr.Markdown("### Discovered Topics"))
# Create a topic word cloud using HTML/CSS for better visibility
for topic in topics:
topic_id = topic.get("id", 0)
words = topic.get("words", [])
weights = topic.get("weights", [])
if words and weights and len(words) == len(weights):
# Generate a word cloud-like div using HTML/CSS
word_cloud_html = f"""
<div style="margin-bottom: 25px;">
<h4 style="margin-bottom: 10px;">Topic {topic_id+1}</h4>
<div style="display: flex; flex-wrap: wrap; gap: 10px; background: #f9f9f9; padding: 15px; border-radius: 5px;">
"""
# Sort words by weight for better visualization
word_weight_pairs = sorted(zip(words, weights), key=lambda x: x[1], reverse=True)
# Add each word with size based on weight
for word, weight in word_weight_pairs:
# Scale weight to a reasonable font size (min 14px, max 28px)
font_size = 14 + min(14, round(weight * 30))
# Color based on weight (darker = higher weight)
color_intensity = max(0, min(90, int(100 - weight * 100)))
color = f"hsl(210, 70%, {color_intensity}%)"
word_cloud_html += f"""
<span style="font-size: {font_size}px; color: {color}; margin: 3px;
padding: 5px; border-radius: 3px; background: rgba(0,0,0,0.03);">
{word}
</span>
"""
word_cloud_html += """
</div>
</div>
"""
output_components.append(gr.HTML(word_cloud_html))
# Add a proper bar chart visualization for topic words
for topic in topics[:min(3, len(topics))]: # Show charts for max 3 topics to avoid clutter
topic_id = topic.get("id", 0)
words = topic.get("words", [])
weights = topic.get("weights", [])
if words and weights and len(words) == len(weights):
# Create dataframe for plotting
df = pd.DataFrame({
'word': words,
'weight': weights
})
# Sort by weight
df = df.sort_values('weight', ascending=False)
# Limit to top N words for clarity
df = df.head(10)
# Create bar chart
fig = px.bar(
df, x='weight', y='word',
title=f"Topic {topic_id+1} Top Words",
labels={'word': 'Word', 'weight': 'Weight'},
height=300,
orientation='h' # Horizontal bars
)
# Improve layout
fig.update_layout(
margin=dict(l=10, r=10, t=40, b=10),
yaxis={'categoryorder': 'total ascending'}
)
output_components.append(gr.Plot(value=fig))
# Visualize topic distributions for each model
model_topics = topic_results.get("model_topics", {})
if model_topics and all(model in model_topics for model in models):
output_components.append(gr.Markdown("### Topic Distribution by Model"))
# Create multi-model topic distribution comparison
distribution_data = []
for model in models:
if model in model_topics:
distribution = model_topics[model]
for i, weight in enumerate(distribution):
if i < 10: # Limit to 10 topics max
distribution_data.append({
'Model': model,
'Topic': f"Topic {i+1}",
'Weight': weight
})
if distribution_data:
df = pd.DataFrame(distribution_data)
# Create grouped bar chart
fig = px.bar(
df, x='Topic', y='Weight', color='Model',
barmode='group',
title="Topic Distribution Comparison",
height=400
)
output_components.append(gr.Plot(value=fig))
# Visualize topic differences as a heatmap
comparisons = topic_results.get("comparisons", {})
if comparisons:
comparison_key = f"{models[0]} vs {models[1]}"
if comparison_key in comparisons:
output_components.append(gr.Markdown("### Topic Similarity Analysis"))
# Get JS divergence
js_divergence = comparisons[comparison_key].get("js_divergence", 0)
# Create a divergence meter
divergence_html = f"""
<div style="margin: 20px 0; padding: 20px; background-color: #f8f9fa; border-radius: 5px; text-align: center;">
<h4 style="margin-top: 0;">Topic Distribution Divergence</h4>
<div style="display: flex; align-items: center; justify-content: center;">
<div style="width: 300px; height: 40px; background: linear-gradient(to right, #1a9850, #ffffbf, #d73027); border-radius: 5px; position: relative; margin: 10px 0;">
<div style="position: absolute; height: 40px; width: 2px; background-color: #000; left: {min(300, max(0, js_divergence * 300))}px;"></div>
</div>
</div>
<div style="display: flex; justify-content: space-between; width: 300px; margin: 0 auto;">
<span>Similar (0.0)</span>
<span>Different (1.0)</span>
</div>
<p style="margin-top: 10px; font-weight: bold;">Score: {js_divergence:.3f}</p>
<p style="margin-bottom: 0; font-size: 0.9em; color: #666;">
Jensen-Shannon Divergence measures the similarity between topic distributions.<br>
Lower values indicate more similar topic distributions between models.
</p>
</div>
"""
output_components.append(gr.HTML(divergence_html))
# Create similarity matrix heatmap if available
similarity_matrix = topic_results.get("similarity_matrix", [])
if similarity_matrix and len(similarity_matrix) > 0:
# Convert to format for heatmap
z_data = similarity_matrix
# Create heatmap
fig = go.Figure(data=go.Heatmap(
z=z_data,
x=[f"{models[1]} Topic {i+1}" for i in range(len(similarity_matrix[0]))],
y=[f"{models[0]} Topic {i+1}" for i in range(len(similarity_matrix))],
colorscale='Viridis',
showscale=True,
colorbar=dict(title="Similarity")
))
fig.update_layout(
title="Topic Similarity Matrix",
height=400,
margin=dict(l=50, r=50, t=50, b=50)
)
output_components.append(gr.Plot(value=fig))
# Show best matching topics
matched_topics = topic_results.get("matched_topics", [])
if matched_topics:
output_components.append(gr.Markdown("### Most Similar Topic Pairs"))
# Create HTML table for matched topics
matched_topics_html = """
<div style="margin: 20px 0;">
<table style="width: 100%; border-collapse: collapse;">
<tr>
<th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Topic Pair</th>
<th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Top Words in Model 1</th>
<th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: left;">Top Words in Model 2</th>
<th style="padding: 8px; border-bottom: 2px solid #ddd; text-align: center;">Similarity</th>
</tr>
"""
# Sort by similarity, highest first
sorted_matches = sorted(matched_topics, key=lambda x: x['similarity'], reverse=True)
for match in sorted_matches:
# Format words with commas
words1 = ", ".join(match["set1_topic_words"][:5]) # Show top 5 words
words2 = ", ".join(match["set2_topic_words"][:5]) # Show top 5 words
# Calculate color based on similarity (green for high, red for low)
similarity = match["similarity"]
color = f"hsl({int(120 * similarity)}, 70%, 50%)"
matched_topics_html += f"""
<tr>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">
{models[0]} Topic {match['set1_topic_id']+1} ↔ {models[1]} Topic {match['set2_topic_id']+1}
</td>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{words1}</td>
<td style="padding: 8px; border-bottom: 1px solid #ddd;">{words2}</td>
<td style="padding: 8px; border-bottom: 1px solid #ddd; text-align: center; font-weight: bold; color: {color};">
{similarity:.2f}
</td>
</tr>
"""
matched_topics_html += """
</table>
</div>
"""
output_components.append(gr.HTML(matched_topics_html))
# If no components were added, show a message
if len(output_components) <= 1:
output_components.append(gr.Markdown("No detailed Topic Modeling analysis found in results."))
return output_components
def process_and_visualize_topic_analysis(analysis_results):
"""
Process the topic modeling analysis results and create visualization components
Args:
analysis_results (dict): The analysis results
Returns:
list: List of gradio components for visualization
"""
try:
print(f"Starting visualization of topic modeling analysis results")
components = create_topic_visualization(analysis_results)
print(f"Completed topic modeling visualization with {len(components)} components")
return components
except Exception as e:
import traceback
error_msg = f"Topic modeling visualization error: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return [
gr.Markdown(f"**Error during topic modeling visualization:**"),
gr.Markdown(f"```\n{str(e)}\n```"),
gr.Markdown("Try adjusting the number of topics or using longer text inputs.")
] |