File size: 13,124 Bytes
c74b269
6334788
 
c74b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6334788
c74b269
 
 
 
 
 
 
 
 
6334788
 
 
 
 
 
 
c74b269
6334788
c74b269
 
 
 
 
6334788
c74b269
 
 
 
 
6334788
 
 
 
 
 
 
 
 
 
 
 
 
 
c74b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6334788
c74b269
 
 
 
 
 
 
 
 
6334788
 
 
 
 
 
 
c74b269
6334788
c74b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd

def create_bias_visualization(analysis_results):
    """
    Create visualizations for bias detection analysis results
    
    Args:
        analysis_results (dict): Analysis results from the bias detection
        
    Returns:
        list: List of gradio components with visualizations
    """
    output_components = []
    
    # Check if we have valid results
    if not analysis_results or "analyses" not in analysis_results:
        return [gr.Markdown("No analysis results found.")]
    
    # Process each prompt
    for prompt, analyses in analysis_results["analyses"].items():
        # Process Bias Detection analysis if available
        if "bias_detection" in analyses:
            bias_results = analyses["bias_detection"]
            
            # Show models being compared
            models = bias_results.get("models", [])
            if len(models) >= 2:
                output_components.append(gr.Markdown(f"### Bias Analysis: Comparing responses from {models[0]} and {models[1]}"))
                
                # Check if there's an error
                if "error" in bias_results:
                    output_components.append(gr.Markdown(f"**Error in bias detection:** {bias_results['error']}"))
                    continue
                
                model1_name, model2_name = models[0], models[1]
                
                # Comparative results
                if "comparative" in bias_results:
                    comparative = bias_results["comparative"]
                    
                    output_components.append(gr.Markdown("#### Comparative Bias Analysis"))
                    
                    # Create summary table
                    summary_html = f"""
                    <table style="width:100%; border-collapse: collapse; margin-bottom: 20px;">
                    <tr>
                        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; background-color: #f2f2f2;">Bias Category</th>
                        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; background-color: #f2f2f2;">{model1_name}</th>
                        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; background-color: #f2f2f2;">{model2_name}</th>
                        <th style="border: 1px solid #ddd; padding: 8px; text-align: left; background-color: #f2f2f2;">Significant Difference?</th>
                    </tr>
                    """
                    
                    # Sentiment row
                    if "sentiment" in comparative:
                        sent_sig = comparative["sentiment"].get("significant", False)
                        summary_html += f"""
                        <tr>
                            <td style="border: 1px solid #ddd; padding: 8px;">Sentiment Bias</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["sentiment"].get(model1_name, "N/A").title()}</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["sentiment"].get(model2_name, "N/A").title()}</td>
                            <td style="border: 1px solid #ddd; padding: 8px; font-weight: bold; color: {'red' if sent_sig else 'green'}">{"Yes" if sent_sig else "No"}</td>
                        </tr>
                        """
                    
                    # Partisan row
                    if "partisan" in comparative:
                        part_sig = comparative["partisan"].get("significant", False)
                        summary_html += f"""
                        <tr>
                            <td style="border: 1px solid #ddd; padding: 8px;">Partisan Leaning</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["partisan"].get(model1_name, "N/A").title()}</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["partisan"].get(model2_name, "N/A").title()}</td>
                            <td style="border: 1px solid #ddd; padding: 8px; font-weight: bold; color: {'red' if part_sig else 'green'}">{"Yes" if part_sig else "No"}</td>
                        </tr>
                        """
                    
                    # Framing row
                    if "framing" in comparative:
                        frame_diff = comparative["framing"].get("different_frames", False)
                        summary_html += f"""
                        <tr>
                            <td style="border: 1px solid #ddd; padding: 8px;">Dominant Frame</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["framing"].get(model1_name, "N/A").title().replace('_', ' ')}</td>
                            <td style="border: 1px solid #ddd; padding: 8px;">{comparative["framing"].get(model2_name, "N/A").title().replace('_', ' ')}</td>
                            <td style="border: 1px solid #ddd; padding: 8px; font-weight: bold; color: {'red' if frame_diff else 'green'}">{"Yes" if frame_diff else "No"}</td>
                        </tr>
                        """
                    
                    # Overall row
                    if "overall" in comparative:
                        overall_sig = comparative["overall"].get("significant_bias_difference", False)
                        summary_html += f"""
                        <tr>
                            <td style="border: 1px solid #ddd; padding: 8px; font-weight: bold;">Overall Bias Difference</td>
                            <td colspan="2" style="border: 1px solid #ddd; padding: 8px; text-align: center;">{comparative["overall"].get("difference", 0):.2f} / 1.0</td>
                            <td style="border: 1px solid #ddd; padding: 8px; font-weight: bold; color: {'red' if overall_sig else 'green'}">{"Yes" if overall_sig else "No"}</td>
                        </tr>
                        """
                    
                    summary_html += "</table>"
                    
                    # Add the HTML table to the components
                    output_components.append(gr.HTML(summary_html))
                
                # Create detailed visualizations for each model if available
                for model_name in [model1_name, model2_name]:
                    if model_name in bias_results:
                        model_data = bias_results[model_name]
                        
                        # Sentiment visualization
                        if "sentiment" in model_data:
                            sentiment = model_data["sentiment"]
                            if "sentiment_scores" in sentiment:
                                # Create sentiment score chart
                                sentiment_df = pd.DataFrame({
                                    'Score': [
                                        sentiment["sentiment_scores"]["pos"],
                                        sentiment["sentiment_scores"]["neg"],
                                        sentiment["sentiment_scores"]["neu"]
                                    ],
                                    'Category': ['Positive', 'Negative', 'Neutral']
                                })
                                
                                fig = px.bar(
                                    sentiment_df,
                                    x='Category',
                                    y='Score',
                                    title=f"Sentiment Analysis for {model_name}",
                                    height=300
                                )
                                
                                output_components.append(gr.Plot(value=fig))
                        
                        # Partisan leaning visualization
                        if "partisan" in model_data:
                            partisan = model_data["partisan"]
                            if "liberal_count" in partisan and "conservative_count" in partisan:
                                # Create partisan terms chart
                                partisan_df = pd.DataFrame({
                                    'Count': [partisan["liberal_count"], partisan["conservative_count"]],
                                    'Category': ['Liberal Terms', 'Conservative Terms']
                                })
                                
                                fig = px.bar(
                                    partisan_df,
                                    x='Category',
                                    y='Count',
                                    title=f"Partisan Term Usage for {model_name}",
                                    color='Category',
                                    color_discrete_map={
                                        'Liberal Terms': 'blue',
                                        'Conservative Terms': 'red'
                                    },
                                    height=300
                                )
                                
                                output_components.append(gr.Plot(value=fig))
                            
                            # Show example partisan terms
                            if "liberal_terms" in partisan or "conservative_terms" in partisan:
                                lib_terms = ", ".join(partisan.get("liberal_terms", []))
                                con_terms = ", ".join(partisan.get("conservative_terms", []))
                                
                                if lib_terms or con_terms:
                                    terms_md = f"**Partisan Terms Used by {model_name}**\n\n"
                                    if lib_terms:
                                        terms_md += f"- Liberal terms: {lib_terms}\n"
                                    if con_terms:
                                        terms_md += f"- Conservative terms: {con_terms}\n"
                                    
                                    output_components.append(gr.Markdown(terms_md))
                        
                        # Framing visualization
                        if "framing" in model_data:
                            framing = model_data["framing"]
                            if "framing_distribution" in framing:
                                # Create framing distribution chart
                                frame_items = []
                                for frame, value in framing["framing_distribution"].items():
                                    frame_items.append({
                                        'Frame': frame.replace('_', ' ').title(),
                                        'Proportion': value
                                    })
                                
                                frame_df = pd.DataFrame(frame_items)
                                
                                fig = px.pie(
                                    frame_df,
                                    values='Proportion',
                                    names='Frame',
                                    title=f"Issue Framing Distribution for {model_name}",
                                    height=400
                                )
                                
                                output_components.append(gr.Plot(value=fig))
                            
                            # Show example framing terms
                            if "framing_examples" in framing:
                                examples_md = f"**Example Framing Terms Used by {model_name}**\n\n"
                                for frame, examples in framing["framing_examples"].items():
                                    if examples:
                                        examples_md += f"- {frame.replace('_', ' ').title()}: {', '.join(examples)}\n"
                                
                                output_components.append(gr.Markdown(examples_md))
    
    # If no components were added, show a message
    if len(output_components) <= 1:
        output_components.append(gr.Markdown("No detailed bias detection analysis found in results."))
    
    return output_components

def process_and_visualize_bias_analysis(analysis_results):
    """
    Process the bias detection analysis results and create visualization components
    
    Args:
        analysis_results (dict): The analysis results
        
    Returns:
        list: List of gradio components for visualization
    """
    try:
        print(f"Starting visualization of bias detection analysis results")
        return create_bias_visualization(analysis_results)
    except Exception as e:
        import traceback
        error_msg = f"Bias detection visualization error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return [gr.Markdown(f"**Error during bias detection visualization:**\n\n```\n{error_msg}\n```")]