File size: 9,740 Bytes
332db3a fb56411 332db3a 20ff8b2 332db3a 20ff8b2 332db3a 31e34c4 332db3a fb56411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import torch
import torch.nn.functional as F
import numpy as np
import time
import random
import importlib
import torch.nn as nn
import os
from IPython.display import display, HTML, Markdown, clear_output
from transformers import AutoTokenizer
rng = np.random.default_rng()
def disable_dropout(model):
for name, module in model.named_modules():
if isinstance(module, nn.Dropout):
setattr(model, name, nn.Identity()) # Replace Dropout with Identity
return model
def load_trained_model(checkpoint_path: str, base_model_name: str = "meta-llama/Llama-3.2-3B"):
# Load tokenizer + config from saved dir
hf_token = os.getenv("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(base_model_name,
use_fast=True,
token=hf_token,
torch_dtype=torch.float32)
# Step 5: Load the model safely
model = torch.load(checkpoint_path, map_location=torch.device('cpu'), weights_only=False)
# Disable dropout
model = disable_dropout(model)
print("✅ Model successfully loaded from checkpoint:", checkpoint_path)
# Move to correct device
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# model = model.to(torch.float32)
model.to(device)
model.eval()
return model, tokenizer
def filter_logits(logits, top_k=0, top_p=1.0, temperature=1.0):
"""
Vectorized top-k and/or top-p (nucleus) filtering with temperature scaling.
Accepts logits of shape (seq_len, vocab_size) or (1, seq_len, vocab_size),
and returns logits in the same shape.
"""
original_shape = logits.shape
if logits.dim() == 3:
logits = logits.squeeze(0) # shape: (seq_len, vocab_size)
logits = logits.clone()
# --- Temperature scaling ---
if temperature != 1.0:
logits = logits / temperature
# --- Top-k filtering ---
if top_k > 0 and top_k < logits.size(-1):
topk_vals, _ = torch.topk(logits, top_k, dim=-1)
thresholds = topk_vals[:, -1].unsqueeze(-1)
logits = torch.where(logits < thresholds, torch.full_like(logits, float("-inf")), logits)
# --- Top-p filtering ---
if top_p > 0.0 and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = torch.softmax(sorted_logits, dim=-1)
cum_probs = probs.cumsum(dim=-1)
mask = cum_probs > top_p
mask[:, 0] = False # always keep top token
scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(dim=-1, index=sorted_indices, src=mask)
logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits)
# Restore original shape
if original_shape[0] == 1:
logits = logits.unsqueeze(0)
return logits
# --- Utility Functions ---
def decode_tokens_safe(token_ids, tokenizer):
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
def find_answer_start(input_ids, marker_ids):
for i in range(len(input_ids) - len(marker_ids) + 1):
if input_ids[i:i + len(marker_ids)] == marker_ids:
return i + len(marker_ids)
return None
def get_noising_schedule(i, max_it, sharpness=5.0):
x = i / max_it
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
def noisify_answer(input_ids, answer_start, tokenizer, threshold=1.0, clustering=0.5, noise_start = 1.0):
noised = input_ids.copy()
answer_len = len(noised) - answer_start
num_to_noise = int(threshold * answer_len * noise_start)
mask_token_id = tokenizer.encode('MASK', add_special_tokens = False)[0]
if num_to_noise == 0:
return noised, []
num_clusters = max(1, int((1 - clustering) * num_to_noise))
cluster_size = max(1, int(num_to_noise / num_clusters))
noised_indices = set()
for _ in range(num_clusters):
center = rng.integers(answer_start, len(noised))
span_start = max(answer_start, center - cluster_size // 2)
span_end = min(len(noised), span_start + cluster_size)
noised_indices.update(range(span_start, span_end))
noised_indices = sorted(list(noised_indices))[:num_to_noise]
for idx in noised_indices:
noised[idx] = mask_token_id
return noised, noised_indices
import torch.nn.functional as F
def noisify_answer_without_remasking(input_ids, answer_start, tokenizer, threshold=1.0, noise_start=1.0, unmasked_mask=None):
noised = input_ids.copy()
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
eligible_indices = list(range(answer_start, len(noised)))
if unmasked_mask is not None:
eligible_indices = [i for i in eligible_indices if not unmasked_mask[i]]
answer_len = len(noised) - answer_start
num_to_noise = int(threshold * answer_len * noise_start)
if num_to_noise == 0 or len(eligible_indices) == 0:
return noised, []
selected = rng.choice(eligible_indices, size=num_to_noise, replace=False).tolist()
for idx in selected:
noised[idx] = mask_token_id
return noised, selected
def confidence_guided_noising(input_ids, answer_start, tokenizer, confidences, noise_clipping, threshold=1.0, noise_start=1.0):
noised = input_ids.copy()
answer_len = len(input_ids) - answer_start
num_to_noise = int(threshold * answer_len * noise_start)
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
eos_token_id = tokenizer.eos_token_id
if num_to_noise == 0:
return noised, []
all_indices = np.arange(answer_start, len(input_ids))
eos_indices = [i for i in all_indices if input_ids[i] == eos_token_id]
non_eos_indices = [i for i in all_indices if input_ids[i] != eos_token_id]
# Proportionally split how many to noise
num_non_eos_to_noise = int(num_to_noise * len(non_eos_indices) / (len(non_eos_indices) + len(eos_indices) + 1e-5))
num_eos_to_noise = num_to_noise - num_non_eos_to_noise
noised_indices = []
# --- Non-EOS ---
if non_eos_indices:
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in non_eos_indices])
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
weights = raw_weights / raw_weights.sum()
chosen = rng.choice(non_eos_indices, size=min(num_non_eos_to_noise, len(non_eos_indices)), replace=False, p=weights)
noised_indices.extend(chosen.tolist())
# --- EOS ---
if eos_indices and num_eos_to_noise > 0:
raw_weights = 1.0 - np.array([confidences[i - answer_start] for i in eos_indices])
raw_weights = np.clip(raw_weights, a_min=noise_clipping, a_max=None)
weights = raw_weights / raw_weights.sum()
chosen = rng.choice(eos_indices, size=min(num_eos_to_noise, len(eos_indices)), replace=False, p=weights)
noised_indices.extend(chosen.tolist())
for idx in noised_indices:
noised[idx] = mask_token_id
noised_indices = sorted(noised_indices)
return noised, noised_indices
def calculate_answer_perplexity(prompt, answer, model_name='gpt2-large'):
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).eval()
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
model.to(device)
full_input = prompt + answer
enc = tokenizer(full_input, return_tensors="pt")
input_ids = enc.input_ids.to(device)
with torch.no_grad():
labels = input_ids.clone()
prompt_len = len(tokenizer(prompt, add_special_tokens=False)["input_ids"])
labels[0, :prompt_len] = -100
loss = model(input_ids, labels=labels).loss
return torch.exp(loss).item()
def format_token_colored_inline(token_id, conf, tokenizer, mask_token_id=128000):
token_str = tokenizer.decode([token_id]).replace("\n", "<br>")
# token_str = token_str.replace(" ", " ") # Preserve spaces for inline display
# token_str = token_str.replace("\t", " ") # Replace tabs with spaces
if token_id == mask_token_id:
color = "black"
else:
color = f"hsl({int(conf * 120)}, 100%, 25%)"
return f"<span style='color:{color}' title='Conf: {conf:.2f}'>{token_str}</span>"
def display_diffusion_output(i, max_it, question, ori_input_tokens, generated_tokens, confidences, answer_start, tokenizer):
clear_output(wait=True)
display(Markdown(f"### Iteration {i}/{max_it-1}"))
display(Markdown(f"**Question:** {tokenizer.decode(ori_input_tokens[:answer_start])}"))
mask_token_id = tokenizer.encode('MASK', add_special_tokens=False)[0]
output_html = ''.join([
format_token_colored_inline(tok, conf, tokenizer, mask_token_id)
for tok, conf in zip(generated_tokens[answer_start:], confidences[answer_start:])
if tok != 128001 # skip EOT
])
output_html = f"<div style='white-space: pre-wrap'>{output_html}</div>"
html = HTML(f"<b>Diffusion Output with Confidence:</b><br><div style='line-height:1.8; white-space: pre-wrap'>{output_html}</div>")
display(html)
return output_html
def save_html_colored_output(filename, html_content):
with open(filename, "w", encoding="utf-8") as f:
f.write(f"""
<html>
<head>
<meta charset="utf-8">
<style>
body {{ font-family: sans-serif; line-height: 1.6; }}
span {{ padding: 0 2px; }}
</style>
</head>
<body>
{html_content}
</body>
</html>
""")
|