File size: 905 Bytes
6c6fbfb
 
 
 
 
 
 
 
 
 
 
 
e6ccf21
 
 
 
0628e12
e6ccf21
 
21db611
 
 
e6ccf21
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
---
title: COMP8604
emoji: 📈
colorFrom: pink
colorTo: yellow
sdk: gradio
sdk_version: 3.29.0
app_file: app.py
pinned: false
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

Multi Principal Element Alloy Property Predictor.  

How to use it?
  1. The interface uses GMM semi-supervised Model by default to predict the mechanical properties of alloys;
  2. Enter the number of the corresponding elements;
  3. Click "Predict”.
     1. Get the normalized chemical formula of the alloy;
     2. Obtain the predicted values;
     3. Present all 14 kinds of empirically calculated parameters[1]

[1]Li, Z.; Nash, W.; O’Brien, S.; Qiu, Y.; Gupta, R.; and Birbilis, N., 2022. cardi- gan: A generative adversarial network model for design and discovery of multi principal element alloys. Journal of Materials Science & Technology, 125 (2022), 81–96.