File size: 905 Bytes
6c6fbfb e6ccf21 0628e12 e6ccf21 21db611 e6ccf21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
---
title: COMP8604
emoji: 📈
colorFrom: pink
colorTo: yellow
sdk: gradio
sdk_version: 3.29.0
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Multi Principal Element Alloy Property Predictor.
How to use it?
1. The interface uses GMM semi-supervised Model by default to predict the mechanical properties of alloys;
2. Enter the number of the corresponding elements;
3. Click "Predict”.
1. Get the normalized chemical formula of the alloy;
2. Obtain the predicted values;
3. Present all 14 kinds of empirically calculated parameters[1]
[1]Li, Z.; Nash, W.; O’Brien, S.; Qiu, Y.; Gupta, R.; and Birbilis, N., 2022. cardi- gan: A generative adversarial network model for design and discovery of multi principal element alloys. Journal of Materials Science & Technology, 125 (2022), 81–96.
|