File size: 11,613 Bytes
2225ea4
 
 
 
 
 
 
9f5e856
 
 
512e13b
 
 
9f5e856
2225ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5bf3a
 
 
 
 
 
 
2225ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bde84d
 
2225ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1648a83
2225ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5bf3a
2225ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ede9665
af0a77a
2225ea4
ede9665
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import gradio as gr
from pandas import Series, DataFrame
import pandas as pd
import sys
import numpy as np

from Interface.empirical_parameter_calculator import EmpiricalParams
from pymatgen.core.periodic_table import Element

from pip._internal import main
main(['install', 'joblib'])
main(['install', 'matminer'])

import joblib

'''
Get the path of all of the saved models.
'''
gmm_ssl_compressive_strength = "./Model/saved_model/gmm_ssl/compressive_strength.pkl"
gmm_ssl_elongation = "./Model/saved_model/gmm_ssl/elongation.pkl"
gmm_ssl_hardness ="./Model/saved_model/gmm_ssl/hardness.pkl"
gmm_ssl_plasticity = "./Model/saved_model/gmm_ssl/plasticity.pkl"
gmm_ssl_tensile_strength = "./Model/saved_model/gmm_ssl/tensile_strength.pkl"
gmm_ssl_yield_strength = "./Model/saved_model/gmm_ssl/yield_strength.pkl"

'''
Get the composition of input alloy.
'''

def normalize_molar_ratios(ratios):
    normalized_ratios = list()
    ele_sum = sum(ratios)
    for ele in ratios:
        ele = float(ele / ele_sum)
        normalized_ratios.append(ele)
    return normalized_ratios


'''
Load the saved ML models.
'''

def predict_input(path):
    with open(path, 'rb') as p:
        loaded_model = joblib.load(p)
    return loaded_model


'''
Predict the six properties of the input alloy, 
with Linear Regression Models, K-Means Semi-supervised Model and GMM Semi-supervised Model.
'''

def pred(Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si, Sn, Ta, Ti, V, W, Y, Zn, Zr, operation):
    # Get the model acceptable composition format.
    # print(B)
    comp = {"Al": Al, "B": B, "C": C, "Co": Co, "Cr": Cr, "Cu": Cu, "Fe": Fe, "Ga": Ga, "Ge": Ge, "Hf": Hf, "Li": Li,
            "Mg": Mg, "Mn": Mn,
            "Mo": Mo, "N": N, "Nb": Nb, "Ni": Ni, "Sc": Sc, "Si": Si, "Sn": Sn, "Ta": Ta, "Ti": Ti, "V": V, "W": W,
            "Y": Y, "Zn": Zn, "Zr": Zr}

    df_values = normalize_molar_ratios(comp.values())
    df = pd.DataFrame(data=[df_values],
                      columns=["Al", "B", "C", "Co", "Cr", "Cu", "Fe", "Ga", "Ge", "Hf", "Li", "Mg", "Mn", "Mo", "N",
                               "Nb", "Ni",
                               "Sc", "Si", "Sn", "Ta", "Ti", "V", "W", "Y", "Zn", "Zr"])
    # print(df)

    Composition = ""
    index = 0
    for k, v in comp.items():
        if v != 0:
            Composition = Composition + k + str(round(df_values[index], 2))
        index += 1
    # print(Composition)
    # print(comp.values())
    # Using semi_supervisor Label Propagation to predict properties.
    Hardness = predict_input(gmm_ssl_hardness).predict(df)
    YieldStrength = predict_input(gmm_ssl_yield_strength).predict(df)
    TensileStrength = predict_input(gmm_ssl_tensile_strength).predict(df)
    Elongation = predict_input(gmm_ssl_elongation).predict(df)
    CompressiveStrength = predict_input(gmm_ssl_compressive_strength).predict(df)
    Plasticity = predict_input(gmm_ssl_plasticity).predict(df)

    Hardness = round(float(Hardness),2)
    YieldStrength = round(float(YieldStrength),2)
    TensileStrength = round(float(TensileStrength),2)
    Elongation = round(float(Elongation),2)
    CompressiveStrength = round(float(CompressiveStrength),2)
    Plasticity = round(float(Plasticity),2)

    return Composition, Hardness, YieldStrength, TensileStrength, Elongation, CompressiveStrength, Plasticity


'''
Import the function to Calculate the empirical parameters.
'''

def empirical_parameter(Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si, Sn, Ta, Ti, V, W, Y, Zn, Zr):
    # Get the model acceptable composition format.
    # print(B)
    comp = {"Al": Al, "B": B, "C": C, "Co": Co, "Cr": Cr, "Cu": Cu, "Fe": Fe, "Ga": Ga, "Ge": Ge, "Hf": Hf, "Li": Li,
            "Mg": Mg, "Mn": Mn,
            "Mo": Mo, "N": N, "Nb": Nb, "Ni": Ni, "Sc": Sc, "Si": Si, "Sn": Sn, "Ta": Ta, "Ti": Ti, "V": V, "W": W,
            "Y": Y, "Zn": Zn, "Zr": Zr}

    df_values = normalize_molar_ratios(comp.values())
    print(df_values)

    df_element=[]
    df_ratio=[]
    index = 0
    for key, value in comp.items():
        if int(value) != 0:
            df_element.append(key)
            df_ratio.append(df_values[index])
        index += 1
    print(df_element)
    print(df_ratio)

    df_elements = []
    for i in df_element:
        df_elements.append(Element[i])
    print(df_elements)

    input_ele = EmpiricalParams(element_list=df_elements,mol_ratio=df_ratio)

    # 1. Calculate the entropy mixing.
    para1 = round(float(input_ele.entropy_mixing()),2)

    #2. Calculate the average atomic radius.
    para2 = round(float(input_ele.mean_atomic_radius()),2)

    #3. Calculate the atomic size difference.
    para3 = round(float(input_ele.atomic_size_difference()),2)

    #4. Calculate the enthalpy of mixing.
    para4= round(float(input_ele.enthalpy_mixing()),2)

    #5. Calculate the standard deviation of enthalpy.
    para5= round(float(input_ele.std_enthalpy_mixing()),2)

    #6. Calculate the average melting point.
    para6= round(float(input_ele.average_melting_point()),2)

    #7. Calculate the standard melting point.
    para7= round(float(input_ele.std_melting_point()),2)

    #8. Calculate the average electronegativity.
    para8= round(float(input_ele.mean_electronegativity()),2)

    #9. Calculate the standard deviation of electronegativity.
    para9= round(float(input_ele.std_electronegativity()),2)

    #10. Calculate the valence electron concentration.
    para10= round(float(input_ele.average_vec()),2)

    #11. Calculate the standard deviation of valence electron concentration.
    para11= round(float(input_ele.std_vec()),2)

    #12. Calculate the omega.
    para12= round(float(input_ele.calc_omega()),2)

    #13. Calculate the density.
    para13= round(float(input_ele.calc_density()),2)

    #14. Calculate the price.
    para14= round(float(input_ele.calc_price()),2)

    return para1, para2, para3, para4,para5, para6, para7, para8, para9, para10, para11, para12, para13, para14


'''
The function of Clear button.
'''

def clear_input():
    return 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "",\
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0


'''
Interface Details
'''

with gr.Blocks() as demo:
    # The title and description of interface.
    gr.Markdown("# Multi Principal Element Alloy Property Predictor")
    gr.Markdown("Input alloy composition to obtain output of alloy properties (sum of composition should be equal to 100)")

    # The section to input the element ratio.
    with gr.Row():
        Al = gr.Number(label="Al")
        B = gr.Number(label="B")
        C = gr.Number(label="C")
        Co = gr.Number(label="Co")
        Cr = gr.Number(label="Cr")
        Cu = gr.Number(label="Cu")
        Fe = gr.Number(label="Fe")
        Ga = gr.Number(label="Ga")
        Ge = gr.Number(label="Ge")
        Hf = gr.Number(label="Hf")
        Li = gr.Number(label="Li")
        Mg = gr.Number(label="Mg")
        Mn = gr.Number(label="Mn")
        Mo = gr.Number(label="Mo")
        N = gr.Number(label="N")
        Nb = gr.Number(label="Nb")
        Ni = gr.Number(label="Ni")
        Sc = gr.Number(label="Sc")
        Si = gr.Number(label="Si")
        Sn = gr.Number(label="Sn")
        Ta = gr.Number(label="Ta")
        Ti = gr.Number(label="Ti")
        V = gr.Number(label="V")
        W = gr.Number(label="W")
        Y = gr.Number(label="Y")
        Zn = gr.Number(label="Zn")
        Zr = gr.Number(label="Zr")
        Composition = gr.Text(label="Alloy Composition")

    #Action buttons.("Clear" and "Prediction")
    with gr.Row():
        clear = gr.Button("Clear")
        submit = gr.Button("Predict")

    #The prediction result(Six mechanical properties) of ML models.
    with gr.Row():
        Hardness = gr.Number(label="Hardness (VHN)")
        YieldStrength = gr.Number(label="Yield Strength (MPa)")
        TensileStrength = gr.Number(label="Tensile Strength (MPa)")
        Elongation = gr.Number(label="Elongation (%)")
        CompressiveStrength = gr.Number(label="Compressive Strength (MPa)")
        Plasticity = gr.Number(label="Plasticity (from compression)")

    #Calculer resutl of empirical parameters.
    with gr.Row():
        entropy_mixing = gr.Number(label="Entropy of Mixing (J/K*mol)")
        average_atomic_radius = gr.Number(label="Average Atomic Radius (Angstroms)")
        atomic_size_dif = gr.Number(label="Atomic Size Difference")
        enthalpy_mixing = gr.Number(label="Enthalpy of Mixing (kJ/mol)")
        std_deviation_enthalpy = gr.Number(label="Standard Deviation of Enthalpy")
        average_melting_point = gr.Number(label="Average Melting Point (Tm, in Celcius)")
        std_deviation_melting_point = gr.Number(label="Standard Deviation of Melting Point")
        average_electronegativity = gr.Number(label="Average Electronegativity (X)")
        std_deviation_electronegativity= gr.Number(label="Standard Deviation of Electronegativity")
        valence_electron_concentration = gr.Number(label="Valence Electron Concentration (VEC)")
        std_deviation_valence_electron_concentration = gr.Number(label="Standard Deviation of Valence Electron Concentration (VEC)")
        omega = gr.Number(label="The Unitless Parameter Omega")
        density = gr.Number(label="Density (g/cm^3)")
        price = gr.Number(label="Price (USD/kg)")

    # Define the action of "Clear" button.
    clear.click(fn=clear_input, inputs=[],
                outputs=[Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si, Sn, Ta, Ti, V, W, Y,
                         Zn, Zr, Composition,
                         Hardness, YieldStrength, TensileStrength, Elongation, CompressiveStrength, Plasticity, entropy_mixing, average_atomic_radius, atomic_size_dif, enthalpy_mixing,
                          std_deviation_enthalpy, average_melting_point, std_deviation_melting_point,
                          average_electronegativity, std_deviation_electronegativity, valence_electron_concentration,
                          std_deviation_valence_electron_concentration, omega, density, price])

    # Define the action of "Predict" button.
    # 1.Predict the result of "Composition", "Hardness", "YieldStrength", "TensileStrength", "Elongation", "CompressiveStrength", "Plasticity".
    submit.click(fn=pred,
                 inputs=[Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si, Sn, Ta, Ti, V, W, Y,
                         Zn, Zr],
                 outputs=[Composition, Hardness, YieldStrength, TensileStrength, Elongation, CompressiveStrength,
                          Plasticity])

    # 2.Activate the empirical parameter calculator.
    submit.click(fn=empirical_parameter,
                 inputs=[Al, B, C, Co, Cr, Cu, Fe, Ga, Ge, Hf, Li, Mg, Mn, Mo, N, Nb, Ni, Sc, Si, Sn, Ta, Ti, V, W, Y,
                         Zn, Zr],
                 outputs=[entropy_mixing, average_atomic_radius, atomic_size_dif, enthalpy_mixing,
                          std_deviation_enthalpy, average_melting_point, std_deviation_melting_point,
                          average_electronegativity, std_deviation_electronegativity, valence_electron_concentration,
                          std_deviation_valence_electron_concentration, omega, density, price])


'''
Launch the interface.
'''
if __name__ == "__main__":
    # Run the Alloy Property Predictor Interface, without public URL.
    demo.launch()

    # Run the Alloy Property Predictor Interface, with a public URL.
    # demo.launch(share="True")