File size: 35,382 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
from typing import *
from numbers import Number
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from .utils import image_uv
__all__ = [
'get_rays',
'get_image_rays',
'get_mipnerf_cones',
'volume_rendering',
'bin_sample',
'importance_sample',
'nerf_render_rays',
'mipnerf_render_rays',
'nerf_render_view',
'mipnerf_render_view',
'InstantNGP',
]
def get_rays(extrinsics: Tensor, intrinsics: Tensor, uv: Tensor) -> Tuple[Tensor, Tensor]:
"""
Args:
extrinsics: (..., 4, 4) extrinsics matrices.
intrinsics: (..., 3, 3) intrinsics matrices.
uv: (..., n_rays, 2) uv coordinates of the rays.
Returns:
rays_o: (..., 1, 3) ray origins
rays_d: (..., n_rays, 3) ray directions.
NOTE: ray directions are NOT normalized. They actuallys makes rays_o + rays_d * z = world coordinates, where z is the depth.
"""
uvz = torch.cat([uv, torch.ones_like(uv[..., :1])], dim=-1).to(extrinsics) # (n_batch, n_views, n_rays, 3)
with torch.cuda.amp.autocast(enabled=False):
inv_transformation = (intrinsics @ extrinsics[..., :3, :3]).inverse()
inv_extrinsics = extrinsics.inverse()
rays_d = uvz @ inv_transformation.transpose(-1, -2)
rays_o = inv_extrinsics[..., None, :3, 3] # (n_batch, n_views, 1, 3)
return rays_o, rays_d
def get_image_rays(extrinsics: Tensor, intrinsics: Tensor, width: int, height: int) -> Tuple[Tensor, Tensor]:
"""
Args:
extrinsics: (..., 4, 4) extrinsics matrices.
intrinsics: (..., 3, 3) intrinsics matrices.
width: width of the image.
height: height of the image.
Returns:
rays_o: (..., 1, 1, 3) ray origins
rays_d: (..., height, width, 3) ray directions.
NOTE: ray directions are NOT normalized. They actuallys makes rays_o + rays_d * z = world coordinates, where z is the depth.
"""
uv = image_uv(height, width).to(extrinsics).flatten(0, 1)
rays_o, rays_d = get_rays(extrinsics, intrinsics, uv)
rays_o = rays_o.unflatten(-2, (1, 1))
rays_d = rays_d.unflatten(-2, (height, width))
return rays_o, rays_d
def get_mipnerf_cones(rays_o: Tensor, rays_d: Tensor, z_vals: Tensor, pixel_width: Tensor) -> Tuple[Tensor, Tensor]:
"""
Args:
rays_o: (..., n_rays, 3) ray origins
rays_d: (..., n_rays, 3) ray directions.
z_vals: (..., n_rays, n_samples) z values.
pixel_width: (...) pixel width. = 1 / (normalized focal length * width)
Returns:
mu: (..., n_rays, n_samples, 3) cone mu.
sigma: (..., n_rays, n_samples, 3, 3) cone sigma.
"""
t_mu = (z_vals[..., 1:] + z_vals[..., :-1]).mul_(0.5)
t_delta = (z_vals[..., 1:] - z_vals[..., :-1]).mul_(0.5)
t_mu_square = t_mu.square()
t_delta_square = t_delta.square()
t_delta_quad = t_delta_square.square()
mu_t = t_mu + 2.0 * t_mu * t_delta_square / (3.0 * t_mu_square + t_delta_square)
sigma_t = t_delta_square / 3.0 - (4.0 / 15.0) * t_delta_quad / (3.0 * t_mu_square + t_delta_square).square() * (12.0 * t_mu_square - t_delta_square)
sigma_r = (pixel_width[..., None, None].square() / 3.0) * (t_mu_square / 4.0 + (5.0 / 12.0) * t_delta_square - (4.0 / 15.0) * t_delta_quad / (3.0 * t_mu_square + t_delta_square))
points_mu = rays_o[:, :, :, None, :] + rays_d[:, :, :, None, :] * mu_t[..., None]
d_dt = rays_d[..., :, None] * rays_d[..., None, :] # (..., n_rays, 3, 3)
points_sigma = sigma_t[..., None, None] * d_dt[..., None, :, :] + sigma_r[..., None, None] * (torch.eye(3).to(rays_o) - d_dt[..., None, :, :])
return points_mu, points_sigma
def get_pixel_width(intrinsics: Tensor, width: int, height: int) -> Tensor:
"""
Args:
intrinsics: (..., 3, 3) intrinsics matrices.
width: width of the image.
height: height of the image.
Returns:
pixel_width: (...) pixel width. = 1 / (normalized focal length * width)
"""
assert width == height, "Currently, only square images are supported."
pixel_width = torch.reciprocal((intrinsics[..., 0, 0] * intrinsics[..., 1, 1]).sqrt() * width)
return pixel_width
def volume_rendering(color: Tensor, sigma: Tensor, z_vals: Tensor, ray_length: Tensor, rgb: bool = True, depth: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
"""
Given color, sigma and z_vals (linear depth of the sampling points), render the volume.
NOTE: By default, color and sigma should have one less sample than z_vals, in correspondence with the average value in intervals.
If queried color are aligned with z_vals, we use trapezoidal rule to calculate the average values in intervals.
Args:
color: (..., n_samples or n_samples - 1, 3) color values.
sigma: (..., n_samples or n_samples - 1) density values.
z_vals: (..., n_samples) z values.
ray_length: (...) length of the ray
Returns:
rgb: (..., 3) rendered color values.
depth: (...) rendered depth values.
weights (..., n_samples) weights.
"""
dists = (z_vals[..., 1:] - z_vals[..., :-1]) * ray_length[..., None]
if color.shape[-2] == z_vals.shape[-1]:
color = (color[..., 1:, :] + color[..., :-1, :]).mul_(0.5)
sigma = (sigma[..., 1:] + sigma[..., :-1]).mul_(0.5)
sigma_delta = sigma * dists
transparancy = (-torch.cat([torch.zeros_like(sigma_delta[..., :1]), sigma_delta[..., :-1]], dim=-1).cumsum(dim=-1)).exp_() # First cumsum then exp for numerical stability
alpha = 1.0 - (-sigma_delta).exp_()
weights = alpha * transparancy
if rgb:
rgb = torch.sum(weights[..., None] * color, dim=-2) if rgb else None
if depth:
z_vals = (z_vals[..., 1:] + z_vals[..., :-1]).mul_(0.5)
depth = torch.sum(weights * z_vals, dim=-1) / weights.sum(dim=-1).clamp_min_(1e-8) if depth else None
return rgb, depth, weights
def neus_volume_rendering(color: Tensor, sdf: Tensor, s: torch.Tensor, z_vals: Tensor = None, rgb: bool = True, depth: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
"""
Given color, sdf values and z_vals (linear depth of the sampling points), do volume rendering. (NeuS)
Args:
color: (..., n_samples or n_samples - 1, 3) color values.
sdf: (..., n_samples) sdf values.
s: (..., n_samples) S values of S-density function in NeuS. The standard deviation of such S-density distribution is 1 / s.
z_vals: (..., n_samples) z values.
ray_length: (...) length of the ray
Returns:
rgb: (..., 3) rendered color values.
depth: (...) rendered depth values.
weights (..., n_samples) weights.
"""
if color.shape[-2] == z_vals.shape[-1]:
color = (color[..., 1:, :] + color[..., :-1, :]).mul_(0.5)
sigmoid_sdf = torch.sigmoid(s * sdf)
alpha = F.relu(1 - sigmoid_sdf[..., :-1] / sigmoid_sdf[..., :-1])
transparancy = torch.cumprod(torch.cat([torch.ones_like(alpha[..., :1]), alpha], dim=-1), dim=-1)
weights = alpha * transparancy
if rgb:
rgb = torch.sum(weights[..., None] * color, dim=-2) if rgb else None
if depth:
z_vals = (z_vals[..., 1:] + z_vals[..., :-1]).mul_(0.5)
depth = torch.sum(weights * z_vals, dim=-1) / weights.sum(dim=-1).clamp_min_(1e-8) if depth else None
return rgb, depth, weights
def bin_sample(size: Union[torch.Size, Tuple[int, ...]], n_samples: int, min_value: Number, max_value: Number, spacing: Literal['linear', 'inverse_linear'], dtype: torch.dtype = None, device: torch.device = None) -> Tensor:
"""
Uniformly (or uniformly in inverse space) sample z values in `n_samples` bins in range [min_value, max_value].
Args:
size: size of the rays
n_samples: number of samples to be sampled, also the number of bins
min_value: minimum value of the range
max_value: maximum value of the range
space: 'linear' or 'inverse_linear'. If 'inverse_linear', the sampling is uniform in inverse space.
Returns:
z_rand: (*size, n_samples) sampled z values, sorted in ascending order.
"""
if spacing == 'linear':
pass
elif spacing == 'inverse_linear':
min_value = 1.0 / min_value
max_value = 1.0 / max_value
bin_length = (max_value - min_value) / n_samples
z_rand = (torch.rand(*size, n_samples, device=device, dtype=dtype) - 0.5) * bin_length + torch.linspace(min_value + bin_length * 0.5, max_value - bin_length * 0.5, n_samples, device=device, dtype=dtype)
if spacing == 'inverse_linear':
z_rand = 1.0 / z_rand
return z_rand
def importance_sample(z_vals: Tensor, weights: Tensor, n_samples: int) -> Tuple[Tensor, Tensor]:
"""
Importance sample z values.
NOTE: By default, weights should have one less sample than z_vals, in correspondence with the intervals.
If weights has the same number of samples as z_vals, we use trapezoidal rule to calculate the average weights in intervals.
Args:
z_vals: (..., n_rays, n_input_samples) z values, sorted in ascending order.
weights: (..., n_rays, n_input_samples or n_input_samples - 1) weights.
n_samples: number of output samples for importance sampling.
Returns:
z_importance: (..., n_rays, n_samples) importance sampled z values, unsorted.
"""
if weights.shape[-1] == z_vals.shape[-1]:
weights = (weights[..., 1:] + weights[..., :-1]).mul_(0.5)
weights = weights / torch.sum(weights, dim=-1, keepdim=True) # (..., n_rays, n_input_samples - 1)
bins_a, bins_b = z_vals[..., :-1], z_vals[..., 1:]
pdf = weights / torch.sum(weights, dim=-1, keepdim=True) # (..., n_rays, n_input_samples - 1)
cdf = torch.cumsum(pdf, dim=-1)
u = torch.rand(*z_vals.shape[:-1], n_samples, device=z_vals.device, dtype=z_vals.dtype)
inds = torch.searchsorted(cdf, u, right=True).clamp(0, cdf.shape[-1] - 1) # (..., n_rays, n_samples)
bins_a = torch.gather(bins_a, dim=-1, index=inds)
bins_b = torch.gather(bins_b, dim=-1, index=inds)
z_importance = bins_a + (bins_b - bins_a) * torch.rand_like(u)
return z_importance
def nerf_render_rays(
nerf: Union[Callable[[Tensor, Tensor], Tuple[Tensor, Tensor]], Tuple[Callable[[Tensor], Tuple[Tensor, Tensor]], Callable[[Tensor], Tuple[Tensor, Tensor]]]],
rays_o: Tensor, rays_d: Tensor,
*,
return_dict: bool = False,
n_coarse: int = 64, n_fine: int = 64,
near: float = 0.1, far: float = 100.0,
z_spacing: Literal['linear', 'inverse_linear'] = 'linear',
):
"""
NeRF rendering of rays. Note that it supports arbitrary batch dimensions (denoted as `...`)
Args:
nerf: nerf model, which takes (points, directions) as input and returns (color, density) as output.
If nerf is a tuple, it should be (nerf_coarse, nerf_fine), where nerf_coarse and nerf_fine are two nerf models for coarse and fine stages respectively.
nerf args:
points: (..., n_rays, n_samples, 3)
directions: (..., n_rays, n_samples, 3)
nerf returns:
color: (..., n_rays, n_samples, 3) color values.
density: (..., n_rays, n_samples) density values.
rays_o: (..., n_rays, 3) ray origins
rays_d: (..., n_rays, 3) ray directions.
pixel_width: (..., n_rays) pixel width. How to compute? pixel_width = 1 / (normalized focal length * width)
Returns
if return_dict is False, return rendered rgb and depth for short cut. (If there are separate coarse and fine results, return fine results)
rgb: (..., n_rays, 3) rendered color values.
depth: (..., n_rays) rendered depth values.
else, return a dict. If `n_fine == 0` or `nerf` is a single model, the dict only contains coarse results:
```
{'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
```
If there are two models for coarse and fine stages, the dict contains both coarse and fine results:
```
{
"coarse": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..},
"fine": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
}
```
"""
if isinstance(nerf, tuple):
nerf_coarse, nerf_fine = nerf
else:
nerf_coarse = nerf_fine = nerf
# 1. Coarse: bin sampling
z_coarse = bin_sample(rays_d.shape[:-1], n_coarse, near, far, device=rays_o.device, dtype=rays_o.dtype, spacing=z_spacing) # (n_batch, n_views, n_rays, n_samples)
points_coarse = rays_o[..., None, :] + rays_d[..., None, :] * z_coarse[..., None] # (n_batch, n_views, n_rays, n_samples, 3)
ray_length = rays_d.norm(dim=-1)
# Query color and density
color_coarse, density_coarse = nerf_coarse(points_coarse, rays_d[..., None, :].expand_as(points_coarse)) # (n_batch, n_views, n_rays, n_samples, 3), (n_batch, n_views, n_rays, n_samples)
# Volume rendering
with torch.no_grad():
rgb_coarse, depth_coarse, weights = volume_rendering(color_coarse, density_coarse, z_coarse, ray_length) # (n_batch, n_views, n_rays, 3), (n_batch, n_views, n_rays, 1), (n_batch, n_views, n_rays, n_samples)
if n_fine == 0:
if return_dict:
return {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights, 'z_vals': z_coarse, 'color': color_coarse, 'density': density_coarse}
else:
return rgb_coarse, depth_coarse
# 2. Fine: Importance sampling
if nerf_coarse is nerf_fine:
# If coarse and fine stages share the same model, the points of coarse stage can be reused,
# and we only need to query the importance samples of fine stage.
z_fine = importance_sample(z_coarse, weights, n_fine)
points_fine = rays_o[..., None, :] + rays_d[..., None, :] * z_fine[..., None]
color_fine, density_fine = nerf_fine(points_fine, rays_d[..., None, :].expand_as(points_fine))
# Merge & volume rendering
z_vals = torch.cat([z_coarse, z_fine], dim=-1)
color = torch.cat([color_coarse, color_fine], dim=-2)
density = torch.cat([density_coarse, density_fine], dim=-1)
z_vals, sort_inds = torch.sort(z_vals, dim=-1)
color = torch.gather(color, dim=-2, index=sort_inds[..., None].expand_as(color))
density = torch.gather(density, dim=-1, index=sort_inds)
rgb, depth, weights = volume_rendering(color, density, z_vals, ray_length)
if return_dict:
return {'rgb': rgb, 'depth': depth, 'weights': weights, 'z_vals': z_vals, 'color': color, 'density': density}
else:
return rgb, depth
else:
# If coarse and fine stages use different models, we need to query the importance samples of both stages.
z_fine = importance_sample(z_coarse, weights, n_fine)
z_vals = torch.cat([z_coarse, z_fine], dim=-1)
points = rays_o[..., None, :] + rays_d[..., None, :] * z_vals[..., None]
color, density = nerf_fine(points)
rgb, depth, weights = volume_rendering(color, density, z_vals, ray_length)
if return_dict:
return {
'coarse': {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights, 'z_vals': z_coarse, 'color': color_coarse, 'density': density_coarse},
'fine': {'rgb': rgb, 'depth': depth, 'weights': weights, 'z_vals': z_vals, 'color': color, 'density': density}
}
else:
return rgb, depth
def mipnerf_render_rays(
mipnerf: Callable[[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]],
rays_o: Tensor, rays_d: Tensor, pixel_width: Tensor,
*,
return_dict: bool = False,
n_coarse: int = 64, n_fine: int = 64, uniform_ratio: float = 0.4,
near: float = 0.1, far: float = 100.0,
z_spacing: Literal['linear', 'inverse_linear'] = 'linear',
) -> Union[Tuple[Tensor, Tensor], Dict[str, Tensor]]:
"""
MipNeRF rendering.
Args:
mipnerf: mipnerf model, which takes (points_mu, points_sigma) as input and returns (color, density) as output.
mipnerf args:
points_mu: (..., n_rays, n_samples, 3) cone mu.
points_sigma: (..., n_rays, n_samples, 3, 3) cone sigma.
directions: (..., n_rays, n_samples, 3)
mipnerf returns:
color: (..., n_rays, n_samples, 3) color values.
density: (..., n_rays, n_samples) density values.
rays_o: (..., n_rays, 3) ray origins
rays_d: (..., n_rays, 3) ray directions.
pixel_width: (..., n_rays) pixel width. How to compute? pixel_width = 1 / (normalized focal length * width)
Returns
if return_dict is False, return rendered results only: (If `n_fine == 0`, return coarse results, otherwise return fine results)
rgb: (..., n_rays, 3) rendered color values.
depth: (..., n_rays) rendered depth values.
else, return a dict. If `n_fine == 0`, the dict only contains coarse results:
```
{'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
```
If n_fine > 0, the dict contains both coarse and fine results :
```
{
"coarse": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..},
"fine": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
}
```
"""
# 1. Coarse: bin sampling
z_coarse = bin_sample(rays_d.shape[:-1], n_coarse, near, far, spacing=z_spacing, device=rays_o.device, dtype=rays_o.dtype)
points_mu_coarse, points_sigma_coarse = get_mipnerf_cones(rays_o, rays_d, z_coarse, pixel_width)
ray_length = rays_d.norm(dim=-1)
# Query color and density
color_coarse, density_coarse = mipnerf(points_mu_coarse, points_sigma_coarse, rays_d[..., None, :].expand_as(points_mu_coarse)) # (n_batch, n_views, n_rays, n_samples, 3), (n_batch, n_views, n_rays, n_samples)
# Volume rendering
rgb_coarse, depth_coarse, weights_coarse = volume_rendering(color_coarse, density_coarse, z_coarse, ray_length) # (n_batch, n_views, n_rays, 3), (n_batch, n_views, n_rays, 1), (n_batch, n_views, n_rays, n_samples)
if n_fine == 0:
if return_dict:
return {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights_coarse, 'z_vals': z_coarse, 'color': color_coarse, 'density': density_coarse}
else:
return rgb_coarse, depth_coarse
# 2. Fine: Importance sampling. (NOTE: coarse stages and fine stages always share the same model, but coarse stage points can not be reused)
with torch.no_grad():
weights_coarse = (1.0 - uniform_ratio) * weights_coarse + uniform_ratio / weights_coarse.shape[-1]
z_fine = importance_sample(z_coarse, weights_coarse, n_fine)
z_fine, _ = torch.sort(z_fine, dim=-2)
points_mu_fine, points_sigma_fine = get_mipnerf_cones(rays_o, rays_d, z_fine, pixel_width)
color_fine, density_fine = mipnerf(points_mu_fine, points_sigma_fine, rays_d[..., None, :].expand_as(points_mu_fine))
# Volume rendering
rgb_fine, depth_fine, weights_fine = volume_rendering(color_fine, density_fine, z_fine, ray_length)
if return_dict:
return {
'coarse': {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights_coarse, 'z_vals': z_coarse, 'color': color_coarse, 'density': density_coarse},
'fine': {'rgb': rgb_fine, 'depth': depth_fine, 'weights': weights_fine, 'z_vals': z_fine, 'color': color_fine, 'density': density_fine}
}
else:
return rgb_fine, depth_fine
def neus_render_rays(
neus: Callable[[Tensor, Tensor], Tuple[Tensor, Tensor]],
s: Union[Number, Tensor],
rays_o: Tensor, rays_d: Tensor,
*,
compute_normal: bool = True,
return_dict: bool = False,
n_coarse: int = 64, n_fine: int = 64,
near: float = 0.1, far: float = 100.0,
z_spacing: Literal['linear', 'inverse_linear'] = 'linear',
):
"""
TODO
NeuS rendering of rays. Note that it supports arbitrary batch dimensions (denoted as `...`)
Args:
neus: neus model, which takes (points, directions) as input and returns (color, density) as output.
nerf args:
points: (..., n_rays, n_samples, 3)
directions: (..., n_rays, n_samples, 3)
nerf returns:
color: (..., n_rays, n_samples, 3) color values.
density: (..., n_rays, n_samples) density values.
rays_o: (..., n_rays, 3) ray origins
rays_d: (..., n_rays, 3) ray directions.
pixel_width: (..., n_rays) pixel width. How to compute? pixel_width = 1 / (normalized focal length * width)
Returns
if return_dict is False, return rendered results only: (If `n_fine == 0`, return coarse results, otherwise return fine results)
rgb: (..., n_rays, 3) rendered color values.
depth: (..., n_rays) rendered depth values.
else, return a dict. If `n_fine == 0`, the dict only contains coarse results:
```
{'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'sdf': ..., 'normal': ...}
```
If n_fine > 0, the dict contains both coarse and fine results:
```
{
"coarse": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..},
"fine": {'rgb': .., 'depth': .., 'weights': .., 'z_vals': .., 'color': .., 'density': ..}
}
```
"""
# 1. Coarse: bin sampling
z_coarse = bin_sample(rays_d.shape[:-1], n_coarse, near, far, device=rays_o.device, dtype=rays_o.dtype, spacing=z_spacing) # (n_batch, n_views, n_rays, n_samples)
points_coarse = rays_o[..., None, :] + rays_d[..., None, :] * z_coarse[..., None] # (n_batch, n_views, n_rays, n_samples, 3)
# Query color and density
color_coarse, sdf_coarse = neus(points_coarse, rays_d[..., None, :].expand_as(points_coarse)) # (n_batch, n_views, n_rays, n_samples, 3), (n_batch, n_views, n_rays, n_samples)
# Volume rendering
with torch.no_grad():
rgb_coarse, depth_coarse, weights = neus_volume_rendering(color_coarse, sdf_coarse, s, z_coarse) # (n_batch, n_views, n_rays, 3), (n_batch, n_views, n_rays, 1), (n_batch, n_views, n_rays, n_samples)
if n_fine == 0:
if return_dict:
return {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights, 'z_vals': z_coarse, 'color': color_coarse, 'sdf': sdf_coarse}
else:
return rgb_coarse, depth_coarse
# If coarse and fine stages share the same model, the points of coarse stage can be reused,
# and we only need to query the importance samples of fine stage.
z_fine = importance_sample(z_coarse, weights, n_fine)
points_fine = rays_o[..., None, :] + rays_d[..., None, :] * z_fine[..., None]
color_fine, sdf_fine = neus(points_fine, rays_d[..., None, :].expand_as(points_fine))
# Merge & volume rendering
z_vals = torch.cat([z_coarse, z_fine], dim=-1)
color = torch.cat([color_coarse, color_fine], dim=-2)
sdf = torch.cat([sdf_coarse, sdf_fine], dim=-1)
z_vals, sort_inds = torch.sort(z_vals, dim=-1)
color = torch.gather(color, dim=-2, index=sort_inds[..., None].expand_as(color))
sdf = torch.gather(sdf, dim=-1, index=sort_inds)
rgb, depth, weights = neus_volume_rendering(color, sdf, s, z_vals)
if return_dict:
return {
'coarse': {'rgb': rgb_coarse, 'depth': depth_coarse, 'weights': weights, 'z_vals': z_coarse, 'color': color_coarse, 'sdf': sdf_coarse},
'fine': {'rgb': rgb, 'depth': depth, 'weights': weights, 'z_vals': z_vals, 'color': color, 'sdf': sdf}
}
else:
return rgb, depth
def nerf_render_view(
nerf: Tensor,
extrinsics: Tensor,
intrinsics: Tensor,
width: int,
height: int,
*,
patchify: bool = False,
patch_size: Tuple[int, int] = (64, 64),
**options: Dict[str, Any]
) -> Tuple[Tensor, Tensor]:
"""
NeRF rendering of views. Note that it supports arbitrary batch dimensions (denoted as `...`)
Args:
extrinsics: (..., 4, 4) extrinsics matrice of the rendered views
intrinsics (optional): (..., 3, 3) intrinsics matrice of the rendered views.
width (optional): image width of the rendered views.
height (optional): image height of the rendered views.
patchify (optional): If the image is too large, render it patch by patch
**options: rendering options.
Returns:
rgb: (..., channels, height, width) rendered color values.
depth: (..., height, width) rendered depth values.
"""
if patchify:
# Patchified rendering
max_patch_width, max_patch_height = patch_size
n_rows, n_columns = math.ceil(height / max_patch_height), math.ceil(width / max_patch_width)
rgb_rows, depth_rows = [], []
for i_row in range(n_rows):
rgb_row, depth_row = [], []
for i_column in range(n_columns):
patch_shape = patch_height, patch_width = min(max_patch_height, height - i_row * max_patch_height), min(max_patch_width, width - i_column * max_patch_width)
uv = image_uv(height, width, i_column * max_patch_width, i_row * max_patch_height, i_column * max_patch_width + patch_width, i_row * max_patch_height + patch_height).to(extrinsics)
uv = uv.flatten(0, 1) # (patch_height * patch_width, 2)
ray_o_, ray_d_ = get_rays(extrinsics, intrinsics, uv)
rgb_, depth_ = nerf_render_rays(nerf, ray_o_, ray_d_, **options, return_dict=False)
rgb_ = rgb_.transpose(-1, -2).unflatten(-1, patch_shape) # (..., 3, patch_height, patch_width)
depth_ = depth_.unflatten(-1, patch_shape) # (..., patch_height, patch_width)
rgb_row.append(rgb_)
depth_row.append(depth_)
rgb_rows.append(torch.cat(rgb_row, dim=-1))
depth_rows.append(torch.cat(depth_row, dim=-1))
rgb = torch.cat(rgb_rows, dim=-2)
depth = torch.cat(depth_rows, dim=-2)
return rgb, depth
else:
# Full rendering
uv = image_uv(height, width).to(extrinsics)
uv = uv.flatten(0, 1) # (height * width, 2)
ray_o_, ray_d_ = get_rays(extrinsics, intrinsics, uv)
rgb, depth = nerf_render_rays(nerf, ray_o_, ray_d_, **options, return_dict=False)
rgb = rgb.transpose(-1, -2).unflatten(-1, (height, width)) # (..., 3, height, width)
depth = depth.unflatten(-1, (height, width)) # (..., height, width)
return rgb, depth
def mipnerf_render_view(
mipnerf: Tensor,
extrinsics: Tensor,
intrinsics: Tensor,
width: int,
height: int,
*,
patchify: bool = False,
patch_size: Tuple[int, int] = (64, 64),
**options: Dict[str, Any]
) -> Tuple[Tensor, Tensor]:
"""
MipNeRF rendering of views. Note that it supports arbitrary batch dimensions (denoted as `...`)
Args:
extrinsics: (..., 4, 4) extrinsics matrice of the rendered views
intrinsics (optional): (..., 3, 3) intrinsics matrice of the rendered views.
width (optional): image width of the rendered views.
height (optional): image height of the rendered views.
patchify (optional): If the image is too large, render it patch by patch
**options: rendering options.
Returns:
rgb: (..., 3, height, width) rendered color values.
depth: (..., height, width) rendered depth values.
"""
pixel_width = get_pixel_width(intrinsics, width, height)
if patchify:
# Patchified rendering
max_patch_width, max_patch_height = patch_size
n_rows, n_columns = math.ceil(height / max_patch_height), math.ceil(width / max_patch_width)
rgb_rows, depth_rows = [], []
for i_row in range(n_rows):
rgb_row, depth_row = [], []
for i_column in range(n_columns):
patch_shape = patch_height, patch_width = min(max_patch_height, height - i_row * max_patch_height), min(max_patch_width, width - i_column * max_patch_width)
uv = image_uv(height, width, i_column * max_patch_width, i_row * max_patch_height, i_column * max_patch_width + patch_width, i_row * max_patch_height + patch_height).to(extrinsics)
uv = uv.flatten(0, 1) # (patch_height * patch_width, 2)
ray_o_, ray_d_ = get_rays(extrinsics, intrinsics, uv)
rgb_, depth_ = mipnerf_render_rays(mipnerf, ray_o_, ray_d_, pixel_width, **options)
rgb_ = rgb_.transpose(-1, -2).unflatten(-1, patch_shape) # (..., 3, patch_height, patch_width)
depth_ = depth_.unflatten(-1, patch_shape) # (..., patch_height, patch_width)
rgb_row.append(rgb_)
depth_row.append(depth_)
rgb_rows.append(torch.cat(rgb_row, dim=-1))
depth_rows.append(torch.cat(depth_row, dim=-1))
rgb = torch.cat(rgb_rows, dim=-2)
depth = torch.cat(depth_rows, dim=-2)
return rgb, depth
else:
# Full rendering
uv = image_uv(height, width).to(extrinsics)
uv = uv.flatten(0, 1) # (height * width, 2)
ray_o_, ray_d_ = get_rays(extrinsics, intrinsics, uv)
rgb, depth = mipnerf_render_rays(mipnerf, ray_o_, ray_d_, pixel_width, **options)
rgb = rgb.transpose(-1, -2).unflatten(-1, (height, width)) # (..., 3, height, width)
depth = depth.unflatten(-1, (height, width)) # (..., height, width)
return rgb, depth
class InstantNGP(nn.Module):
"""
An implementation of InstantNGP, Müller et. al., https://nvlabs.github.io/instant-ngp/.
Requires `tinycudann` package.
Install it by:
```
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
```
"""
def __init__(self,
view_dependent: bool = True,
base_resolution: int = 16,
finest_resolution: int = 2048,
n_levels: int = 16,
num_layers_density: int = 2,
hidden_dim_density: int = 64,
num_layers_color: int = 3,
hidden_dim_color: int = 64,
log2_hashmap_size: int = 19,
bound: float = 1.0,
color_channels: int = 3,
):
super().__init__()
import tinycudann
N_FEATURES_PER_LEVEL = 2
GEO_FEAT_DIM = 15
self.bound = bound
self.color_channels = color_channels
# density network
self.num_layers_density = num_layers_density
self.hidden_dim_density = hidden_dim_density
per_level_scale = (finest_resolution / base_resolution) ** (1 / (n_levels - 1))
self.encoder = tinycudann.Encoding(
n_input_dims=3,
encoding_config={
"otype": "HashGrid",
"n_levels": n_levels,
"n_features_per_level": N_FEATURES_PER_LEVEL,
"log2_hashmap_size": log2_hashmap_size,
"base_resolution": base_resolution,
"per_level_scale": per_level_scale,
},
)
self.density_net = tinycudann.Network(
n_input_dims=N_FEATURES_PER_LEVEL * n_levels,
n_output_dims=1 + GEO_FEAT_DIM,
network_config={
"otype": "FullyFusedMLP",
"activation": "ReLU",
"output_activation": "None",
"n_neurons": hidden_dim_density,
"n_hidden_layers": num_layers_density - 1,
},
)
# color network
self.num_layers_color = num_layers_color
self.hidden_dim_color = hidden_dim_color
self.view_dependent = view_dependent
if view_dependent:
self.encoder_dir = tinycudann.Encoding(
n_input_dims=3,
encoding_config={
"otype": "SphericalHarmonics",
"degree": 4,
},
)
self.in_dim_color = self.encoder_dir.n_output_dims + GEO_FEAT_DIM
else:
self.in_dim_color = GEO_FEAT_DIM
self.color_net = tinycudann.Network(
n_input_dims=self.in_dim_color,
n_output_dims=color_channels,
network_config={
"otype": "FullyFusedMLP",
"activation": "ReLU",
"output_activation": "None",
"n_neurons": hidden_dim_color,
"n_hidden_layers": num_layers_color - 1,
},
)
def forward(self, x: torch.Tensor, d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x: (..., 3) points
d: (..., 3) directions
Returns:
color: (..., 3) color values.
density: (..., 1) density values.
"""
batch_shape = x.shape[:-1]
x, d = x.reshape(-1, 3), d.reshape(-1, 3)
# density
x = (x + self.bound) / (2 * self.bound) # to [0, 1]
x = self.encoder(x)
density, geo_feat = self.density_net(x).split([1, 15], dim=-1)
density = F.softplus(density).squeeze(-1)
# color
if self.view_dependent:
d = (F.normalize(d, dim=-1) + 1) / 2 # tcnn SH encoding requires inputs to be in [0, 1]
d = self.encoder_dir(d)
h = torch.cat([d, geo_feat], dim=-1)
else:
h = geo_feat
color = self.color_net(h)
return color.reshape(*batch_shape, self.color_channels), density.reshape(*batch_shape)
|