File size: 16,051 Bytes
ec0c8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from typing import IO
import zipfile
import json
import io
from typing import *
from pathlib import Path
import re

import numpy as np
import cv2 

from .tools import timeit


LEGACY_SEGFORMER_CLASSES = [
    'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ',
    'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth',
    'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car',
    'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug',
    'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe',
    'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
    'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
    'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path',
    'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door',
    'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table',
    'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove',
    'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar',
    'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
    'chandelier', 'awning', 'streetlight', 'booth', 'television receiver',
    'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister',
    'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van',
    'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything',
    'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent',
    'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank',
    'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake',
    'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce',
    'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen',
    'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
    'clock', 'flag'
]
LEGACY_SEGFORMER_LABELS = {k: i for i, k in enumerate(LEGACY_SEGFORMER_CLASSES)}


def write_rgbd_zip(
    file: Union[IO, os.PathLike], 
    image: Union[np.ndarray, bytes], 
    depth: Union[np.ndarray, bytes], mask: Union[np.ndarray, bytes], 
    segmentation_mask: Union[np.ndarray, bytes] = None, segmentation_labels: Union[Dict[str, int], bytes] = None, 
    intrinsics: np.ndarray = None, 
    normal: np.ndarray = None, normal_mask: np.ndarray = None,
    meta: Union[Dict[str, Any], bytes] = None, 
    *, image_quality: int = 95, depth_type: Literal['linear', 'log', 'disparity'] = 'linear', depth_format: Literal['png', 'exr'] = 'png', depth_max_dynamic_range: float = 1e4, png_compression: int = 7
):
    """
    Write RGBD data as zip archive containing the image, depth, mask, segmentation_mask, and meta data.
    In the zip file there will be:
    - `meta.json`: The meta data as a JSON file.
    - `image.jpg`: The RGB image as a JPEG file.
    - `depth.png/exr`: The depth map as a PNG or EXR file, depending on the `depth_type`.
    - `mask.png` (optional): The mask as a uint8 PNG file.
    - `segmentation_mask.png` (optional): The segformer mask as a uint8/uint16 PNG file.

    You can provided those data as np.ndarray or bytes. If you provide them as np.ndarray, they will be properly processed and encoded.
    If you provide them as bytes, they will be written as is, assuming they are already encoded.
    """
    if meta is None:
        meta = {}
    elif isinstance(meta, bytes):
        meta = json.loads(meta.decode())

    if isinstance(image, bytes):
        image_bytes = image
    elif isinstance(image, np.ndarray):
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()
    
    if isinstance(depth, bytes):
        depth_bytes = depth
    elif isinstance(depth, np.ndarray):
        meta['depth_type'] = depth_type
        if depth_type == 'linear':
            if depth.dtype == np.float16:
                depth_format = 'exr'
                depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])[1].tobytes()
            elif np.issubdtype(depth.dtype, np.floating):
                depth_format = 'exr'
                depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
            elif depth.dtype in [np.uint8, np.uint16]:
                depth_format = 'png'
                depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
        elif depth_type == 'log':
            depth_format = 'png'
            depth = depth.astype(np.float32)
            near = max(depth[mask].min(), 1e-3)
            far = min(depth[mask].max(), near * depth_max_dynamic_range)
            depth = ((np.log(depth.clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65535).astype(np.uint16)
            depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
            meta['depth_near'] = float(near)
            meta['depth_far'] = float(far)
        elif depth_type == 'disparity':
            depth_format = 'png'
            depth = depth.astype(np.float32)
            depth = 1 / (depth + 1e-12)
            depth = (depth / depth[mask].max()).clip(0, 1)
            if np.unique(depth) < 200:
                depth = (depth * 255).astype(np.uint8)
            else:
                depth = (depth * 65535).astype(np.uint16)
            depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
    
    if isinstance(mask, bytes):
        mask_bytes = mask
    elif isinstance(mask, np.ndarray):
        mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()

    if segmentation_mask is not None:
        if isinstance(segmentation_mask, bytes):
            segmentation_mask_bytes = segmentation_mask
        else:
            segmentation_mask_bytes = cv2.imencode('.png', segmentation_mask)[1].tobytes()
        assert segmentation_labels is not None, "You provided a segmentation mask, but not the corresponding labels."
        if isinstance(segmentation_labels, bytes):
            segmentation_labels = json.loads(segmentation_labels)
        meta['segmentation_labels'] = segmentation_labels

    if intrinsics is not None:
        meta['intrinsics'] = intrinsics.tolist()

    if normal is not None:
        if isinstance(normal, bytes):
            normal_bytes = normal
        elif isinstance(normal, np.ndarray):
            normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16)
            normal = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR)
            normal_bytes = cv2.imencode('.png', normal, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
        if normal_mask is None:
            normal_mask = np.ones(image.shape[:2], dtype=bool)
        normal_mask_bytes = cv2.imencode('.png', normal_mask.astype(np.uint8) * 255)[1].tobytes()

    meta_bytes = meta if isinstance(meta, bytes) else json.dumps(meta).encode()

    with zipfile.ZipFile(file, 'w') as z:
        z.writestr('meta.json', meta_bytes)
        z.writestr('image.jpg', image_bytes)
        z.writestr(f'depth.{depth_format}', depth_bytes)
        z.writestr('mask.png', mask_bytes)
        if segmentation_mask is not None:
            z.writestr('segmentation_mask.png', segmentation_mask_bytes)
        if normal is not None:
            z.writestr('normal.png', normal_bytes)
            z.writestr('normal_mask.png', normal_mask_bytes)


def read_rgbd_zip(file: Union[str, Path, IO], return_bytes: bool = False) -> Dict[str, Union[np.ndarray, Dict[str, Any], bytes]]:   
    """
    Read an RGBD zip file and return the image, depth, mask, segmentation_mask, intrinsics, and meta data.
    
    ### Parameters:
    - `file: Union[str, Path, IO]`
        The file path or file object to read from.
    - `return_bytes: bool = False`
        If True, return the image, depth, mask, and segmentation_mask as raw bytes.

    ### Returns:
    - `Tuple[Dict[str, Union[np.ndarray, Dict[str, Any]]], Dict[str, bytes]]`
        A dictionary containing: (If missing, the value will be None; if return_bytes is True, the value will be bytes)
        - `image`: RGB numpy.ndarray of shape (H, W, 3).
        - `depth`: float32 numpy.ndarray of shape (H, W).
        - `mask`: bool numpy.ndarray of shape (H, W). 
        - `segformer_mask`: uint8 numpy.ndarray of shape (H, W).
        - `intrinsics`: float32 numpy.ndarray of shape (3, 3).
        - `meta`: Dict[str, Any].
    """
    # Load & extract archive
    with zipfile.ZipFile(file, 'r') as z:
        meta = z.read('meta.json')
        if not return_bytes:
            meta = json.loads(z.read('meta.json'))

        image = z.read('image.jpg')
        if not return_bytes:
            image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        
        depth_name = next(s for s in z.namelist() if s.startswith('depth'))
        depth = z.read(depth_name)
        if not return_bytes:
            depth = cv2.imdecode(np.frombuffer(z.read(depth_name), np.uint8), cv2.IMREAD_UNCHANGED)
        
        if 'mask.png' in z.namelist():
            mask = z.read('mask.png')
            if not return_bytes:
                mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
        else:
            mask = None

        if 'segformer_mask.png' in z.namelist():
            # NOTE: Legacy support for segformer_mask.png
            segmentation_mask = z.read('segformer_mask.png')
            segmentation_labels = None
            if not return_bytes:
                segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
                segmentation_labels = LEGACY_SEGFORMER_LABELS
        elif 'segmentation_mask.png' in z.namelist():
            segmentation_mask = z.read('segmentation_mask.png')
            segmentation_labels = None
            if not return_bytes:
                segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
                segmentation_labels = meta['segmentation_labels']
        else:
            segmentation_mask = None
            segmentation_labels = None
        
        if 'normal.png' in z.namelist():
            normal = z.read('normal.png')
            if not return_bytes:
                normal = cv2.imdecode(np.frombuffer(z.read('normal.png'), np.uint8), cv2.IMREAD_UNCHANGED)
                normal = cv2.cvtColor(normal, cv2.COLOR_BGR2RGB)
                normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0]
                normal = normal / np.linalg.norm(normal, axis=-1, keepdims=True)
        
            if 'normal_mask.png' in z.namelist():
                normal_mask = z.read('normal_mask.png')
                normal_mask = cv2.imdecode(np.frombuffer(normal_mask, np.uint8), cv2.IMREAD_UNCHANGED) > 0
            else:
                normal_mask = np.ones(image.shape[:2], dtype=bool)
        else:
            normal, normal_mask = None, None

    # recover linear depth
    if not return_bytes:
        if mask is None:
            mask = np.ones(image.shape[:2], dtype=bool)
        if meta['depth_type'] == 'linear':
            depth = depth.astype(np.float32)
            mask = mask & (depth > 0)
        elif meta['depth_type'] == 'log':
            near, far = meta['depth_near'], meta['depth_far']
            if depth.dtype == np.uint16:
                depth = depth.astype(np.float32) / 65535
            elif depth.dtype == np.uint8:
                depth = depth.astype(np.float32) / 255
            depth = near ** (1 - depth) * far ** depth
            mask = mask & ~np.isnan(depth)
        elif meta['depth_type'] == 'disparity':
            mask = mask & (depth > 0)
            if depth.dtype == np.uint16:
                depth = depth.astype(np.float32) / 65535
            elif depth.dtype == np.uint8:
                depth = depth.astype(np.float32) / 255
            depth = 1 / (depth + 1e-12)
    
    # intrinsics
    if not return_bytes and 'intrinsics' in meta:
        intrinsics = np.array(meta['intrinsics'], dtype=np.float32)
    else:
        intrinsics = None

    # depth unit
    if not return_bytes and 'depth_unit' in meta:
        depth_unit_str = meta['depth_unit']
        if r := re.match(r'([\d.]*)(\w*)', depth_unit_str):
            digits, unit = r.groups()
            depth_unit = float(digits or 1) * {'m': 1, 'cm': 0.01, 'mm': 0.001}[unit]
        else:
            depth_unit = None
    else:
        depth_unit = None

    return_dict = {
        'image': image,
        'depth': depth,
        'mask': mask,
        'segmentation_mask': segmentation_mask,
        'segmentation_labels': segmentation_labels,
        'normal': normal,
        'normal_mask': normal_mask,
        'intrinsics': intrinsics,
        'depth_unit': depth_unit,
        'meta': meta,
    }
    return_dict = {k: v for k, v in return_dict.items() if v is not None}
    
    return return_dict

def write_rgbxyz(file: Union[IO, Path], image: np.ndarray, points: np.ndarray, mask: np.ndarray = None, image_quality: int = 95):
    if isinstance(image, bytes):
        image_bytes = image
    elif isinstance(image, np.ndarray):
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()

    if isinstance(points, bytes):
        points_bytes = points
    elif isinstance(points, np.ndarray):
        points_bytes = cv2.imencode('.exr', points.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
    
    if mask is None:
        mask = np.ones(image.shape[:2], dtype=bool)
    if isinstance(mask, bytes):
        mask_bytes = mask
    elif isinstance(mask, np.ndarray):
        mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()

    is_archive = hasattr(file, 'write') or Path(file).suffix == '.zip'
    if is_archive:
        with zipfile.ZipFile(file, 'w') as z:
            z.writestr('image.jpg', image_bytes)
            z.writestr('points.exr', points_bytes)
            if mask is not None:
                z.writestr('mask.png', mask_bytes)
    else:
        file = Path(file)
        file.mkdir(parents=True, exist_ok=True)
        with open(file / 'image.jpg', 'wb') as f:
            f.write(image_bytes)
        with open(file / 'points.exr', 'wb') as f:
            f.write(points_bytes)
        if mask is not None:
            with open(file / 'mask.png', 'wb') as f:
                f.write(mask_bytes)


def read_rgbxyz(file: Union[IO, str, Path]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Dict[str, Any]]:
    is_archive = hasattr(file, 'read') or Path(file).suffix == '.zip'
    if is_archive:
        with zipfile.ZipFile(file, 'r') as z:
            image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
            points = cv2.imdecode(np.frombuffer(z.read('points.exr'), np.uint8), cv2.IMREAD_UNCHANGED)
            if 'mask.png' in z.namelist():
                mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
            else:
                mask = np.ones(image.shape[:2], dtype=bool)
    else:
        file = Path(file)
        file.mkdir(parents=True, exist_ok=True)
        image = cv2.imread(str(file / 'image.jpg'), cv2.IMREAD_COLOR)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        points = cv2.imread(str(file / 'points.exr'), cv2.IMREAD_UNCHANGED)
        if (file /'mask.png').exists():
            mask = cv2.imread(str(file / 'mask.png'), cv2.IMREAD_UNCHANGED) > 0
        else:
            mask = np.ones(image.shape[:2], dtype=bool)

    return image, points, mask