File size: 16,051 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from typing import IO
import zipfile
import json
import io
from typing import *
from pathlib import Path
import re
import numpy as np
import cv2
from .tools import timeit
LEGACY_SEGFORMER_CLASSES = [
'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ',
'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth',
'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car',
'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug',
'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe',
'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path',
'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door',
'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table',
'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove',
'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar',
'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
'chandelier', 'awning', 'streetlight', 'booth', 'television receiver',
'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister',
'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van',
'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything',
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent',
'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank',
'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake',
'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce',
'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen',
'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
'clock', 'flag'
]
LEGACY_SEGFORMER_LABELS = {k: i for i, k in enumerate(LEGACY_SEGFORMER_CLASSES)}
def write_rgbd_zip(
file: Union[IO, os.PathLike],
image: Union[np.ndarray, bytes],
depth: Union[np.ndarray, bytes], mask: Union[np.ndarray, bytes],
segmentation_mask: Union[np.ndarray, bytes] = None, segmentation_labels: Union[Dict[str, int], bytes] = None,
intrinsics: np.ndarray = None,
normal: np.ndarray = None, normal_mask: np.ndarray = None,
meta: Union[Dict[str, Any], bytes] = None,
*, image_quality: int = 95, depth_type: Literal['linear', 'log', 'disparity'] = 'linear', depth_format: Literal['png', 'exr'] = 'png', depth_max_dynamic_range: float = 1e4, png_compression: int = 7
):
"""
Write RGBD data as zip archive containing the image, depth, mask, segmentation_mask, and meta data.
In the zip file there will be:
- `meta.json`: The meta data as a JSON file.
- `image.jpg`: The RGB image as a JPEG file.
- `depth.png/exr`: The depth map as a PNG or EXR file, depending on the `depth_type`.
- `mask.png` (optional): The mask as a uint8 PNG file.
- `segmentation_mask.png` (optional): The segformer mask as a uint8/uint16 PNG file.
You can provided those data as np.ndarray or bytes. If you provide them as np.ndarray, they will be properly processed and encoded.
If you provide them as bytes, they will be written as is, assuming they are already encoded.
"""
if meta is None:
meta = {}
elif isinstance(meta, bytes):
meta = json.loads(meta.decode())
if isinstance(image, bytes):
image_bytes = image
elif isinstance(image, np.ndarray):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()
if isinstance(depth, bytes):
depth_bytes = depth
elif isinstance(depth, np.ndarray):
meta['depth_type'] = depth_type
if depth_type == 'linear':
if depth.dtype == np.float16:
depth_format = 'exr'
depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])[1].tobytes()
elif np.issubdtype(depth.dtype, np.floating):
depth_format = 'exr'
depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
elif depth.dtype in [np.uint8, np.uint16]:
depth_format = 'png'
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
elif depth_type == 'log':
depth_format = 'png'
depth = depth.astype(np.float32)
near = max(depth[mask].min(), 1e-3)
far = min(depth[mask].max(), near * depth_max_dynamic_range)
depth = ((np.log(depth.clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65535).astype(np.uint16)
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
meta['depth_near'] = float(near)
meta['depth_far'] = float(far)
elif depth_type == 'disparity':
depth_format = 'png'
depth = depth.astype(np.float32)
depth = 1 / (depth + 1e-12)
depth = (depth / depth[mask].max()).clip(0, 1)
if np.unique(depth) < 200:
depth = (depth * 255).astype(np.uint8)
else:
depth = (depth * 65535).astype(np.uint16)
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
if isinstance(mask, bytes):
mask_bytes = mask
elif isinstance(mask, np.ndarray):
mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()
if segmentation_mask is not None:
if isinstance(segmentation_mask, bytes):
segmentation_mask_bytes = segmentation_mask
else:
segmentation_mask_bytes = cv2.imencode('.png', segmentation_mask)[1].tobytes()
assert segmentation_labels is not None, "You provided a segmentation mask, but not the corresponding labels."
if isinstance(segmentation_labels, bytes):
segmentation_labels = json.loads(segmentation_labels)
meta['segmentation_labels'] = segmentation_labels
if intrinsics is not None:
meta['intrinsics'] = intrinsics.tolist()
if normal is not None:
if isinstance(normal, bytes):
normal_bytes = normal
elif isinstance(normal, np.ndarray):
normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16)
normal = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR)
normal_bytes = cv2.imencode('.png', normal, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
if normal_mask is None:
normal_mask = np.ones(image.shape[:2], dtype=bool)
normal_mask_bytes = cv2.imencode('.png', normal_mask.astype(np.uint8) * 255)[1].tobytes()
meta_bytes = meta if isinstance(meta, bytes) else json.dumps(meta).encode()
with zipfile.ZipFile(file, 'w') as z:
z.writestr('meta.json', meta_bytes)
z.writestr('image.jpg', image_bytes)
z.writestr(f'depth.{depth_format}', depth_bytes)
z.writestr('mask.png', mask_bytes)
if segmentation_mask is not None:
z.writestr('segmentation_mask.png', segmentation_mask_bytes)
if normal is not None:
z.writestr('normal.png', normal_bytes)
z.writestr('normal_mask.png', normal_mask_bytes)
def read_rgbd_zip(file: Union[str, Path, IO], return_bytes: bool = False) -> Dict[str, Union[np.ndarray, Dict[str, Any], bytes]]:
"""
Read an RGBD zip file and return the image, depth, mask, segmentation_mask, intrinsics, and meta data.
### Parameters:
- `file: Union[str, Path, IO]`
The file path or file object to read from.
- `return_bytes: bool = False`
If True, return the image, depth, mask, and segmentation_mask as raw bytes.
### Returns:
- `Tuple[Dict[str, Union[np.ndarray, Dict[str, Any]]], Dict[str, bytes]]`
A dictionary containing: (If missing, the value will be None; if return_bytes is True, the value will be bytes)
- `image`: RGB numpy.ndarray of shape (H, W, 3).
- `depth`: float32 numpy.ndarray of shape (H, W).
- `mask`: bool numpy.ndarray of shape (H, W).
- `segformer_mask`: uint8 numpy.ndarray of shape (H, W).
- `intrinsics`: float32 numpy.ndarray of shape (3, 3).
- `meta`: Dict[str, Any].
"""
# Load & extract archive
with zipfile.ZipFile(file, 'r') as z:
meta = z.read('meta.json')
if not return_bytes:
meta = json.loads(z.read('meta.json'))
image = z.read('image.jpg')
if not return_bytes:
image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
depth_name = next(s for s in z.namelist() if s.startswith('depth'))
depth = z.read(depth_name)
if not return_bytes:
depth = cv2.imdecode(np.frombuffer(z.read(depth_name), np.uint8), cv2.IMREAD_UNCHANGED)
if 'mask.png' in z.namelist():
mask = z.read('mask.png')
if not return_bytes:
mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
mask = None
if 'segformer_mask.png' in z.namelist():
# NOTE: Legacy support for segformer_mask.png
segmentation_mask = z.read('segformer_mask.png')
segmentation_labels = None
if not return_bytes:
segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
segmentation_labels = LEGACY_SEGFORMER_LABELS
elif 'segmentation_mask.png' in z.namelist():
segmentation_mask = z.read('segmentation_mask.png')
segmentation_labels = None
if not return_bytes:
segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
segmentation_labels = meta['segmentation_labels']
else:
segmentation_mask = None
segmentation_labels = None
if 'normal.png' in z.namelist():
normal = z.read('normal.png')
if not return_bytes:
normal = cv2.imdecode(np.frombuffer(z.read('normal.png'), np.uint8), cv2.IMREAD_UNCHANGED)
normal = cv2.cvtColor(normal, cv2.COLOR_BGR2RGB)
normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0]
normal = normal / np.linalg.norm(normal, axis=-1, keepdims=True)
if 'normal_mask.png' in z.namelist():
normal_mask = z.read('normal_mask.png')
normal_mask = cv2.imdecode(np.frombuffer(normal_mask, np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
normal_mask = np.ones(image.shape[:2], dtype=bool)
else:
normal, normal_mask = None, None
# recover linear depth
if not return_bytes:
if mask is None:
mask = np.ones(image.shape[:2], dtype=bool)
if meta['depth_type'] == 'linear':
depth = depth.astype(np.float32)
mask = mask & (depth > 0)
elif meta['depth_type'] == 'log':
near, far = meta['depth_near'], meta['depth_far']
if depth.dtype == np.uint16:
depth = depth.astype(np.float32) / 65535
elif depth.dtype == np.uint8:
depth = depth.astype(np.float32) / 255
depth = near ** (1 - depth) * far ** depth
mask = mask & ~np.isnan(depth)
elif meta['depth_type'] == 'disparity':
mask = mask & (depth > 0)
if depth.dtype == np.uint16:
depth = depth.astype(np.float32) / 65535
elif depth.dtype == np.uint8:
depth = depth.astype(np.float32) / 255
depth = 1 / (depth + 1e-12)
# intrinsics
if not return_bytes and 'intrinsics' in meta:
intrinsics = np.array(meta['intrinsics'], dtype=np.float32)
else:
intrinsics = None
# depth unit
if not return_bytes and 'depth_unit' in meta:
depth_unit_str = meta['depth_unit']
if r := re.match(r'([\d.]*)(\w*)', depth_unit_str):
digits, unit = r.groups()
depth_unit = float(digits or 1) * {'m': 1, 'cm': 0.01, 'mm': 0.001}[unit]
else:
depth_unit = None
else:
depth_unit = None
return_dict = {
'image': image,
'depth': depth,
'mask': mask,
'segmentation_mask': segmentation_mask,
'segmentation_labels': segmentation_labels,
'normal': normal,
'normal_mask': normal_mask,
'intrinsics': intrinsics,
'depth_unit': depth_unit,
'meta': meta,
}
return_dict = {k: v for k, v in return_dict.items() if v is not None}
return return_dict
def write_rgbxyz(file: Union[IO, Path], image: np.ndarray, points: np.ndarray, mask: np.ndarray = None, image_quality: int = 95):
if isinstance(image, bytes):
image_bytes = image
elif isinstance(image, np.ndarray):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()
if isinstance(points, bytes):
points_bytes = points
elif isinstance(points, np.ndarray):
points_bytes = cv2.imencode('.exr', points.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
if mask is None:
mask = np.ones(image.shape[:2], dtype=bool)
if isinstance(mask, bytes):
mask_bytes = mask
elif isinstance(mask, np.ndarray):
mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()
is_archive = hasattr(file, 'write') or Path(file).suffix == '.zip'
if is_archive:
with zipfile.ZipFile(file, 'w') as z:
z.writestr('image.jpg', image_bytes)
z.writestr('points.exr', points_bytes)
if mask is not None:
z.writestr('mask.png', mask_bytes)
else:
file = Path(file)
file.mkdir(parents=True, exist_ok=True)
with open(file / 'image.jpg', 'wb') as f:
f.write(image_bytes)
with open(file / 'points.exr', 'wb') as f:
f.write(points_bytes)
if mask is not None:
with open(file / 'mask.png', 'wb') as f:
f.write(mask_bytes)
def read_rgbxyz(file: Union[IO, str, Path]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Dict[str, Any]]:
is_archive = hasattr(file, 'read') or Path(file).suffix == '.zip'
if is_archive:
with zipfile.ZipFile(file, 'r') as z:
image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
points = cv2.imdecode(np.frombuffer(z.read('points.exr'), np.uint8), cv2.IMREAD_UNCHANGED)
if 'mask.png' in z.namelist():
mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
mask = np.ones(image.shape[:2], dtype=bool)
else:
file = Path(file)
file.mkdir(parents=True, exist_ok=True)
image = cv2.imread(str(file / 'image.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
points = cv2.imread(str(file / 'points.exr'), cv2.IMREAD_UNCHANGED)
if (file /'mask.png').exists():
mask = cv2.imread(str(file / 'mask.png'), cv2.IMREAD_UNCHANGED) > 0
else:
mask = np.ones(image.shape[:2], dtype=bool)
return image, points, mask
|