File size: 18,219 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
from typing import *
from abc import abstractmethod
from queue import Empty, Full
from threading import Thread
from queue import Queue
from multiprocessing import Process
from threading import Thread, Event
import multiprocessing
import threading
import inspect
import time
import uuid
from copy import deepcopy
import itertools
import functools
__all__ = [
'Node',
'Link',
'ConcurrentNode',
'Worker',
'WorkerFunction',
'Provider',
'ProviderFunction',
'Sequential',
'Batch',
'Unbatch',
'Parallel',
'Graph',
'Buffer',
]
TERMINATE_CHECK_INTERVAL = 0.5
class _ItemWrapper:
def __init__(self, data: Any, id: Union[int, List[int]] = None):
self.data = data
self.id = id
class Terminate(Exception):
pass
def _get_queue_item(queue: Queue, terminate_flag: Event, timeout: float = None) -> _ItemWrapper:
while True:
try:
item: _ItemWrapper = queue.get(block=True, timeout=TERMINATE_CHECK_INTERVAL if timeout is None else min(timeout, TERMINATE_CHECK_INTERVAL))
if terminate_flag.is_set():
raise Terminate()
return item
except Empty:
if terminate_flag.is_set():
raise Terminate()
if timeout is not None:
timeout -= TERMINATE_CHECK_INTERVAL
if timeout <= 0:
raise Empty()
def _put_queue_item(queue: Queue, item: _ItemWrapper, terminate_flag: Event):
while True:
try:
queue.put(item, block=True, timeout=TERMINATE_CHECK_INTERVAL)
if terminate_flag.is_set():
raise Terminate()
return
except Full:
if terminate_flag.is_set():
raise Terminate()
class Node:
def __init__(self, in_buffer_size: int = 1, out_buffer_size: int = 1) -> None:
self.input: Queue = Queue(maxsize=in_buffer_size)
self.output: Queue = Queue(maxsize=out_buffer_size)
self.in_buffer_size = in_buffer_size
self.out_buffer_size = out_buffer_size
@abstractmethod
def start(self):
pass
@abstractmethod
def terminate(self):
pass
def stop(self):
self.terminate()
self.join()
@abstractmethod
def join(self):
pass
def put(self, data: Any, key: str = None, block: bool = True) -> None:
item = _ItemWrapper(data)
self.input.put(item, block=block)
def get(self, key: str = None, block: bool = True) -> Any:
item: _ItemWrapper = self.output.get(block=block)
return item.data
def __enter__(self):
self.start()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.terminate()
self.join()
class ConcurrentNode(Node):
job: Union[Thread, Process]
def __init__(self, running_as: Literal['thread', 'process'] = 'thread', in_buffer_size: int = 1, out_buffer_size: int = 1) -> None:
super().__init__(in_buffer_size, out_buffer_size)
self.running_as = running_as
@abstractmethod
def _loop_fn(self, input: Queue, output: Queue, terminate_flag: Event):
pass
def start(self):
if self.running_as == 'thread':
terminate_flag = threading.Event()
job = Thread(target=self._loop_fn, args=(self.input, self.output, terminate_flag))
elif self.running_as == 'process':
terminate_flag = multiprocessing.Event()
job = Process(target=self._loop_fn, args=(self.input, self.output, terminate_flag))
job.start()
self.job = job
self.terminate_flag = terminate_flag
def terminate(self):
self.terminate_flag.set()
def join(self):
self.job.join()
class Worker(ConcurrentNode):
def __init__(self, running_as: Literal['thread', 'process'] = 'thread', in_buffer_size: int = 0, out_buffer_size: int = 0) -> None:
super().__init__(running_as, in_buffer_size, out_buffer_size)
def init(self) -> None:
"""
This method is called the the thread is started, to initialize any resources that is only held in the thread.
"""
pass
@abstractmethod
def work(self, *args, **kwargs) -> Union[Any, Dict[str, Any]]:
"""
This method defines the job that the node should do for each input item.
A item obtained from the input queue is passed as arguments to this method, and the result is placed in the output queue.
The method is executed concurrently with other nodes.
"""
pass
def _loop_fn(self, input: Queue, output: Queue, terminate_flag: Event):
self.init()
try:
while True:
item = _get_queue_item(input, terminate_flag)
result = self.work(item.data)
_put_queue_item(output, _ItemWrapper(result, item.id), terminate_flag)
except Terminate:
return
class Provider(ConcurrentNode):
"""
A node that provides data to successive nodes. It takes no input and provides data to the output queue.
"""
def __init__(self, running_as: Literal['thread', 'process'], out_buffer_size: int = 1) -> None:
super().__init__(running_as, 0, out_buffer_size)
def init(self) -> None:
"""
This method is called the the thread or process is started, to initialize any resources that is only held in the thread or process.
"""
pass
@abstractmethod
def provide(self) -> Generator[Any, None, None]:
pass
def _loop_fn(self, input: Queue, output: Queue, terminate_flag: Event):
self.init()
try:
for data in self.provide():
_put_queue_item(output, _ItemWrapper(data), terminate_flag)
except Terminate:
return
class WorkerFunction(Worker):
def __init__(self, fn: Callable, running_as: 'thread', in_buffer_size: int = 1, out_buffer_size: int = 1) -> None:
super().__init__(running_as, in_buffer_size, out_buffer_size)
self.fn = fn
def work(self, *args, **kwargs):
return self.fn(*args, **kwargs)
class ProviderFunction(Provider):
def __init__(self, fn: Callable, running_as: 'thread', out_buffer_size: int = 1) -> None:
super().__init__(running_as, out_buffer_size)
self.fn = fn
def provide(self):
for item in self.fn():
yield item
class Link:
def __init__(self, src: Queue, dst: Queue):
self.src = src
self.dst = dst
def _thread_fn(self):
try:
while True:
item = _get_queue_item(self.src, self.terminate_flag)
_put_queue_item(self.dst, item, self.terminate_flag)
except Terminate:
return
def start(self):
self.terminate_flag = threading.Event()
self.thread = Thread(target=self._thread_fn)
self.thread.start()
def terminate(self):
self.terminate_flag.set()
def join(self):
self.thread.join()
class Graph(Node):
"""
Graph pipeline of nodes and links
"""
nodes: List[Node]
links: List[Link]
def __init__(self, in_buffer_size: int = 1, out_buffer_size: int = 1):
super().__init__(in_buffer_size, out_buffer_size)
self.nodes = []
self.links = []
def add(self, node: Node):
self.nodes.append(node)
def link(self, src: Union[Node, Tuple[Node, str]], dst: Union[Node, Tuple[Node, str]]):
"""
Links the output of the source node to the input of the destination node.
If the source or destination node is None, the pipeline's input or output is used.
"""
src_queue = self.input if src is None else src.output
dst_queue = self.output if dst is None else dst.input
self.links.append(Link(src_queue, dst_queue))
def chain(self, nodes: Iterable[Node]):
"""
Link the output of each node to the input of the next node.
"""
nodes = list(nodes)
for i in range(len(nodes) - 1):
self.link(nodes[i], nodes[i + 1])
def start(self):
for node in self.nodes:
node.start()
for link in self.links:
link.start()
def terminate(self):
for node in self.nodes:
node.terminate()
for link in self.links:
link.terminate()
def join(self):
for node in self.nodes:
node.join()
for link in self.links:
link.join()
def __iter__(self):
providers = [node for node in self.nodes if isinstance(node, Provider)]
if len(providers) == 0:
raise ValueError("No provider node found in the pipeline. If you want to iterate over the pipeline, the pipeline must be driven by a provider node.")
with self:
# while all(provider.job.is_alive() for provider in providers):
while True:
yield self.get()
def __call__(self, data: Any) -> Any:
"""
Submit data to the pipeline's input queue, and return the output data asynchronously.
NOTE: The pipeline must be streamed (i.e., every output item is uniquely associated with an input item) for this to work.
"""
# TODO
class Sequential(Graph):
"""
Pipeline of nodes in sequential order, where each node takes the output of the previous node as input.
The order of input and output items is preserved (FIFO)
"""
def __init__(self, nodes: List[Union[Node, Callable]], function_running_as: Literal['thread', 'process'] = 'thread', in_buffer_size: int = 1, out_buffer_size: int = 1):
"""
Initialize the pipeline with a list of nodes to execute sequentially.
### Parameters:
- nodes: List of nodes or functions to execute sequentially. Generator functions are wrapped in provider nodes, and other functions are wrapped in worker nodes.
- function_running_as: Whether to wrap the function as a thread or process worker. Default is 'thread'.
- in_buffer_size: Maximum size of the input queue of the pipeline. Default is 0 (unlimited).
- out_buffer_size: Maximum size of the output queue of the pipeline. Default is 0 (unlimited).
"""
super().__init__(in_buffer_size, out_buffer_size)
for node in nodes:
if isinstance(node, Node):
pass
elif isinstance(node, Callable):
if inspect.isgeneratorfunction(node):
node = ProviderFunction(node, function_running_as)
else:
node = WorkerFunction(node, function_running_as)
else:
raise ValueError(f"Invalid node type: {type(node)}")
self.add(node)
self.chain([None, *self.nodes, None])
class Parallel(Node):
"""
A FIFO node that runs multiple nodes in parallel to process the input items. Each input item is handed to one of the nodes whoever is available.
NOTE: It is FIFO if and only if all the nested nodes are FIFO.
"""
nodes: List[Node]
def __init__(self, nodes: Iterable[Node], in_buffer_size: int = 1, out_buffer_size: int = 1, function_running_as: Literal['thread', 'process'] = 'thread'):
super().__init__(in_buffer_size, out_buffer_size)
self.nodes = []
for node in nodes:
if isinstance(node, Node):
pass
elif isinstance(node, Callable):
if inspect.isgeneratorfunction(node):
node = ProviderFunction(node, function_running_as)
else:
node = WorkerFunction(node, function_running_as)
else:
raise ValueError(f"Invalid node type: {type(node)}")
self.nodes.append(node)
self.output_order = Queue()
self.lock = threading.Lock()
def _in_thread_fn(self, node: Node):
try:
while True:
with self.lock:
# A better idea: first make sure its node is vacant, then get it a new item.
# Currently we will not be able to know which node is busy util there is at least one item already waiting in the queue of the node.
# This could lead to suboptimal scheduling.
item = _get_queue_item(self.input, self.terminate_flag)
self.output_order.put(node.output)
_put_queue_item(node.input, item, self.terminate_flag)
except Terminate:
return
def _out_thread_fn(self):
try:
while True:
queue = _get_queue_item(self.output_order, self.terminate_flag)
item = _get_queue_item(queue, self.terminate_flag)
_put_queue_item(self.output, item, self.terminate_flag)
except Terminate:
return
def start(self):
self.terminate_flag = threading.Event()
self.in_threads = []
for node in self.nodes:
thread = Thread(target=self._in_thread_fn, args=(node,))
thread.start()
self.in_threads.append(thread)
thread = Thread(target=self._out_thread_fn)
thread.start()
self.out_thread = thread
for node in self.nodes:
node.start()
def terminate(self):
self.terminate_flag.set()
for node in self.nodes:
node.terminate()
def join(self):
for thread in self.in_threads:
thread.join()
self.out_thread.join()
class UnorderedParallel(Graph):
"""
Pipeline of nodes in parallel, where each input item is handed to one of the nodes whoever is available.
NOTE: The order of the output items is NOT guaranteed to be the same as the input items, depending on how fast the nodes handle their input.
"""
def __init__(self, nodes: List[Union[Node, Callable]], function_running_as: Literal['thread', 'process'] = 'thread', in_buffer_size: int = 1, out_buffer_size: int = 1):
"""
Initialize the pipeline with a list of nodes to execute in parallel. If a function is given, it is wrapped in a worker node.
### Parameters:
- nodes: List of nodes or functions to execute in parallel. Generator functions are wrapped in provider nodes, and other functions are wrapped in worker nodes.
- function_running_as: Whether to wrap the function as a thread or process worker. Default is 'thread'.
- in_buffer_size: Maximum size of the input queue of the pipeline. Default is 0 (unlimited).
- out_buffer_size: Maximum size of the output queue of the pipeline. Default is 0 (unlimited).
"""
super().__init__(in_buffer_size, out_buffer_size)
for node in nodes:
if isinstance(node, Node):
pass
elif isinstance(node, Callable):
if inspect.isgeneratorfunction(node):
node = ProviderFunction(node, function_running_as)
else:
node = WorkerFunction(node, function_running_as)
else:
raise ValueError(f"Invalid node type: {type(node)}")
self.add(node)
for i in range(len(nodes)):
self.chain([None, self.nodes[i], None])
class Batch(ConcurrentNode):
"""
Groups every `batch_size` items into a batch (a list of items) and passes the batch to successive nodes.
The `patience` parameter specifies the maximum time to wait for a batch to be filled before sending it to the next node,
i.e., when the earliest item in the batch is out of `patience` seconds, the batch is sent regardless of its size.
"""
def __init__(self, batch_size: int, patience: float = None, in_buffer_size: int = 1, out_buffer_size: int = 1):
assert batch_size > 0, "Batch size must be greater than 0."
super().__init__('thread', in_buffer_size, out_buffer_size)
self.batch_size = batch_size
self.patience = patience
def _loop_fn(self, input: Queue, output: Queue, terminate_flag: Event):
try:
while True:
batch_id, batch_data = [], []
# Try to fill the batch
for i in range(self.batch_size):
if i == 0 or self.patience is None:
timeout = None
else:
timeout = self.patience - (time.time() - earliest_time)
if timeout < 0:
break
try:
item = _get_queue_item(input, terminate_flag, timeout)
except Empty:
break
if i == 0:
earliest_time = time.time()
batch_data.append(item.data)
batch_id.append(item.id)
batch = _ItemWrapper(batch_data, batch_id)
_put_queue_item(output, batch, terminate_flag)
except Terminate:
return
class Unbatch(ConcurrentNode):
"""
Ungroups every batch (a list of items) into individual items and passes them to successive nodes.
"""
def __init__(self, in_buffer_size: int = 1, out_buffer_size: int = 1):
super().__init__('thread', in_buffer_size, out_buffer_size)
def _loop_fn(self, input: Queue, output: Queue, terminate_flag: Event):
try:
while True:
batch = _get_queue_item(input, terminate_flag)
for id, data in zip(batch.id or itertools.repeat(None), batch.data):
item = _ItemWrapper(data, id)
_put_queue_item(output, item, terminate_flag)
except Terminate:
return
class Buffer(Node):
"A FIFO node that buffers items in a queue. Usefull achieve better temporal balance when its successor node has a variable processing time."
def __init__(self, size: int):
super().__init__(size, size)
self.size = size
self.input = self.output = Queue(maxsize=size) |