File size: 24,928 Bytes
201ab98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import os
from pathlib import Path
import sys
if (_package_root := str(Path(__file__).absolute().parents[2])) not in sys.path:
sys.path.insert(0, _package_root)
import json
import time
import random
from typing import *
import itertools
from contextlib import nullcontext
from concurrent.futures import ThreadPoolExecutor
import io
import numpy as np
import cv2
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.version
import accelerate
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed
import utils3d
import click
from tqdm import tqdm, trange
import mlflow
torch.backends.cudnn.benchmark = False # Varying input size, make sure cudnn benchmark is disabled
from moge.train.dataloader import TrainDataLoaderPipeline
from moge.train.losses import (
affine_invariant_global_loss,
affine_invariant_local_loss,
edge_loss,
normal_loss,
mask_l2_loss,
mask_bce_loss,
monitoring,
)
from moge.train.utils import build_optimizer, build_lr_scheduler
from moge.utils.geometry_torch import intrinsics_to_fov
from moge.utils.vis import colorize_depth, colorize_normal
from moge.utils.tools import key_average, recursive_replace, CallbackOnException, flatten_nested_dict
from moge.test.metrics import compute_metrics
@click.command()
@click.option('--config', 'config_path', type=str, default='configs/debug.json')
@click.option('--workspace', type=str, default='workspace/debug', help='Path to the workspace')
@click.option('--checkpoint', 'checkpoint_path', type=str, default=None, help='Path to the checkpoint to load')
@click.option('--batch_size_forward', type=int, default=8, help='Batch size for each forward pass on each device')
@click.option('--gradient_accumulation_steps', type=int, default=1, help='Number of steps to accumulate gradients')
@click.option('--enable_gradient_checkpointing', type=bool, default=True, help='Use gradient checkpointing in backbone')
@click.option('--enable_mixed_precision', type=bool, default=False, help='Use mixed precision training. Backbone is converted to FP16')
@click.option('--enable_ema', type=bool, default=True, help='Maintain an exponential moving average of the model weights')
@click.option('--num_iterations', type=int, default=1000000, help='Number of iterations to train the model')
@click.option('--save_every', type=int, default=10000, help='Save checkpoint every n iterations')
@click.option('--log_every', type=int, default=1000, help='Log metrics every n iterations')
@click.option('--vis_every', type=int, default=0, help='Visualize every n iterations')
@click.option('--num_vis_images', type=int, default=32, help='Number of images to visualize, must be a multiple of divided batch size')
@click.option('--enable_mlflow', type=bool, default=True, help='Log metrics to MLFlow')
@click.option('--seed', type=int, default=0, help='Random seed')
def main(
config_path: str,
workspace: str,
checkpoint_path: str,
batch_size_forward: int,
gradient_accumulation_steps: int,
enable_gradient_checkpointing: bool,
enable_mixed_precision: bool,
enable_ema: bool,
num_iterations: int,
save_every: int,
log_every: int,
vis_every: int,
num_vis_images: int,
enable_mlflow: bool,
seed: Optional[int],
):
# Load config
with open(config_path, 'r') as f:
config = json.load(f)
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision='fp16' if enable_mixed_precision else None,
kwargs_handlers=[
DistributedDataParallelKwargs(find_unused_parameters=True)
]
)
device = accelerator.device
batch_size_total = batch_size_forward * gradient_accumulation_steps * accelerator.num_processes
# Log config
if accelerator.is_main_process:
if enable_mlflow:
try:
mlflow.log_params({
**click.get_current_context().params,
'batch_size_total': batch_size_total,
})
except:
print('Failed to log config to MLFlow')
Path(workspace).mkdir(parents=True, exist_ok=True)
with Path(workspace).joinpath('config.json').open('w') as f:
json.dump(config, f, indent=4)
# Set seed
if seed is not None:
set_seed(seed, device_specific=True)
# Initialize model
print('Initialize model')
with accelerator.local_main_process_first():
from moge.model import import_model_class_by_version
MoGeModel = import_model_class_by_version(config['model_version'])
model = MoGeModel(**config['model'])
count_total_parameters = sum(p.numel() for p in model.parameters())
print(f'Total parameters: {count_total_parameters}')
# Set up EMA model
if enable_ema and accelerator.is_main_process:
ema_avg_fn = lambda averaged_model_parameter, model_parameter, num_averaged: 0.999 * averaged_model_parameter + 0.001 * model_parameter
ema_model = torch.optim.swa_utils.AveragedModel(model, device=accelerator.device, avg_fn=ema_avg_fn)
# Set gradient checkpointing
if enable_gradient_checkpointing:
model.enable_gradient_checkpointing()
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="torch.utils.checkpoint")
# Initalize optimizer & lr scheduler
optimizer = build_optimizer(model, config['optimizer'])
lr_scheduler = build_lr_scheduler(optimizer, config['lr_scheduler'])
count_grouped_parameters = [sum(p.numel() for p in param_group['params'] if p.requires_grad) for param_group in optimizer.param_groups]
for i, count in enumerate(count_grouped_parameters):
print(f'- Group {i}: {count} parameters')
# Attempt to load checkpoint
checkpoint: Dict[str, Any]
with accelerator.local_main_process_first():
if checkpoint_path.endswith('.pt'):
# - Load specific checkpoint file
print(f'Load checkpoint: {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
elif checkpoint_path == "latest":
# - Load latest
checkpoint_path = Path(workspace, 'checkpoint', 'latest.pt')
if checkpoint_path.exists():
print(f'Load checkpoint: {checkpoint_path}')
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=True)
i_step = checkpoint['step']
if 'model' not in checkpoint and (checkpoint_model_path := Path(workspace, 'checkpoint', f'{i_step:08d}.pt')).exists():
print(f'Load model checkpoint: {checkpoint_model_path}')
checkpoint['model'] = torch.load(checkpoint_model_path, map_location='cpu', weights_only=True)['model']
if 'optimizer' not in checkpoint and (checkpoint_optimizer_path := Path(workspace, 'checkpoint', f'{i_step:08d}_optimizer.pt')).exists():
print(f'Load optimizer checkpoint: {checkpoint_optimizer_path}')
checkpoint.update(torch.load(checkpoint_optimizer_path, map_location='cpu', weights_only=True))
if enable_ema and accelerator.is_main_process:
if 'ema_model' not in checkpoint and (checkpoint_ema_model_path := Path(workspace, 'checkpoint', f'{i_step:08d}_ema.pt')).exists():
print(f'Load EMA model checkpoint: {checkpoint_ema_model_path}')
checkpoint['ema_model'] = torch.load(checkpoint_ema_model_path, map_location='cpu', weights_only=True)['model']
else:
checkpoint = None
elif checkpoint_path is not None:
# - Load by step number
i_step = int(checkpoint_path)
checkpoint = {'step': i_step}
if (checkpoint_model_path := Path(workspace, 'checkpoint', f'{i_step:08d}.pt')).exists():
print(f'Load model checkpoint: {checkpoint_model_path}')
checkpoint['model'] = torch.load(checkpoint_model_path, map_location='cpu', weights_only=True)['model']
if (checkpoint_optimizer_path := Path(workspace, 'checkpoint', f'{i_step:08d}_optimizer.pt')).exists():
print(f'Load optimizer checkpoint: {checkpoint_optimizer_path}')
checkpoint.update(torch.load(checkpoint_optimizer_path, map_location='cpu', weights_only=True))
if enable_ema and accelerator.is_main_process:
if (checkpoint_ema_model_path := Path(workspace, 'checkpoint', f'{i_step:08d}_ema.pt')).exists():
print(f'Load EMA model checkpoint: {checkpoint_ema_model_path}')
checkpoint['ema_model'] = torch.load(checkpoint_ema_model_path, map_location='cpu', weights_only=True)['model']
else:
checkpoint = None
if checkpoint is None:
# Initialize model weights
print('Initialize model weights')
with accelerator.local_main_process_first():
model.init_weights()
initial_step = 0
else:
model.load_state_dict(checkpoint['model'], strict=False)
if 'step' in checkpoint:
initial_step = checkpoint['step'] + 1
else:
initial_step = 0
if 'optimizer' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
if enable_ema and accelerator.is_main_process and 'ema_model' in checkpoint:
ema_model.module.load_state_dict(checkpoint['ema_model'], strict=False)
if 'lr_scheduler' in checkpoint:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
del checkpoint
model, optimizer = accelerator.prepare(model, optimizer)
if torch.version.hip and isinstance(model, torch.nn.parallel.DistributedDataParallel):
# Hacking potential gradient synchronization issue in ROCm backend
from moge.model.utils import sync_ddp_hook
model.register_comm_hook(None, sync_ddp_hook)
# Initialize training data pipeline
with accelerator.local_main_process_first():
train_data_pipe = TrainDataLoaderPipeline(config['data'], batch_size_forward)
def _write_bytes_retry_loop(save_path: Path, data: bytes):
while True:
try:
save_path.write_bytes(data)
break
except Exception as e:
print('Error while saving checkpoint, retrying in 1 minute: ', e)
time.sleep(60)
# Ready to train
records = []
model.train()
with (
train_data_pipe,
tqdm(initial=initial_step, total=num_iterations, desc='Training', disable=not accelerator.is_main_process) as pbar,
ThreadPoolExecutor(max_workers=1) as save_checkpoint_executor,
):
# Get some batches for visualization
if accelerator.is_main_process:
batches_for_vis: List[Dict[str, torch.Tensor]] = []
num_vis_images = num_vis_images // batch_size_forward * batch_size_forward
for _ in range(num_vis_images // batch_size_forward):
batch = train_data_pipe.get()
batches_for_vis.append(batch)
# Visualize GT
if vis_every > 0 and accelerator.is_main_process and initial_step == 0:
save_dir = Path(workspace).joinpath('vis/gt')
for i_batch, batch in enumerate(tqdm(batches_for_vis, desc='Visualize GT', leave=False)):
image, gt_depth, gt_mask, gt_mask_inf, gt_intrinsics, info = batch['image'], batch['depth'], batch['depth_mask'], batch['depth_mask_inf'], batch['intrinsics'], batch['info']
gt_points = utils3d.torch.depth_to_points(gt_depth, intrinsics=gt_intrinsics)
gt_normal, gt_normal_mask = utils3d.torch.points_to_normals(gt_points, gt_mask)
for i_instance in range(batch['image'].shape[0]):
idx = i_batch * batch_size_forward + i_instance
image_i = (image[i_instance].numpy().transpose(1, 2, 0) * 255).astype(np.uint8)
gt_depth_i = gt_depth[i_instance].numpy()
gt_mask_i = gt_mask[i_instance].numpy()
gt_mask_inf_i = gt_mask_inf[i_instance].numpy()
gt_points_i = gt_points[i_instance].numpy()
gt_normal_i = gt_normal[i_instance].numpy()
save_dir.joinpath(f'{idx:04d}').mkdir(parents=True, exist_ok=True)
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/image.jpg')), cv2.cvtColor(image_i, cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/points.exr')), cv2.cvtColor(gt_points_i, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/mask.png')), gt_mask_i * 255)
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/depth_vis.png')), cv2.cvtColor(colorize_depth(gt_depth_i, gt_mask_i), cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/normal.png')), cv2.cvtColor(colorize_normal(gt_normal_i), cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/mask_inf.png')), gt_mask_inf_i * 255)
with save_dir.joinpath(f'{idx:04d}/info.json').open('w') as f:
json.dump(info[i_instance], f)
# Reset seed to avoid training on the same data when resuming training
if seed is not None:
set_seed(seed + initial_step, device_specific=True)
# Training loop
for i_step in range(initial_step, num_iterations):
i_accumulate, weight_accumulate = 0, 0
while i_accumulate < gradient_accumulation_steps:
# Load batch
batch = train_data_pipe.get()
image, gt_depth, gt_mask, gt_mask_fin, gt_mask_inf, gt_intrinsics, label_type, is_metric = batch['image'], batch['depth'], batch['depth_mask'], batch['depth_mask_fin'], batch['depth_mask_inf'], batch['intrinsics'], batch['label_type'], batch['is_metric']
image, gt_depth, gt_mask, gt_mask_fin, gt_mask_inf, gt_intrinsics = image.to(device), gt_depth.to(device), gt_mask.to(device), gt_mask_fin.to(device), gt_mask_inf.to(device), gt_intrinsics.to(device)
current_batch_size = image.shape[0]
if all(label == 'invalid' for label in label_type):
continue # NOTE: Skip all-invalid batches to avoid messing up the optimizer.
gt_points = utils3d.torch.depth_to_points(gt_depth, intrinsics=gt_intrinsics)
gt_focal = 1 / (1 / gt_intrinsics[..., 0, 0] ** 2 + 1 / gt_intrinsics[..., 1, 1] ** 2) ** 0.5
with accelerator.accumulate(model):
# Forward
if i_step <= config.get('low_resolution_training_steps', 0):
num_tokens = config['model']['num_tokens_range'][0]
else:
num_tokens = accelerate.utils.broadcast_object_list([random.randint(*config['model']['num_tokens_range'])])[0]
with torch.autocast(device_type=accelerator.device.type, dtype=torch.float16, enabled=enable_mixed_precision):
output = model(image, num_tokens=num_tokens)
pred_points, pred_mask, pred_metric_scale = output['points'], output['mask'], output.get('metric_scale', None)
# Compute loss (per instance)
loss_list, weight_list = [], []
for i in range(current_batch_size):
gt_metric_scale = None
loss_dict, weight_dict, misc_dict = {}, {}, {}
misc_dict['monitoring'] = monitoring(pred_points[i])
for k, v in config['loss'][label_type[i]].items():
weight_dict[k] = v['weight']
if v['function'] == 'affine_invariant_global_loss':
loss_dict[k], misc_dict[k], gt_metric_scale = affine_invariant_global_loss(pred_points[i], gt_points[i], gt_mask[i], **v['params'])
elif v['function'] == 'affine_invariant_local_loss':
loss_dict[k], misc_dict[k] = affine_invariant_local_loss(pred_points[i], gt_points[i], gt_mask[i], gt_focal[i], gt_metric_scale, **v['params'])
elif v['function'] == 'normal_loss':
loss_dict[k], misc_dict[k] = normal_loss(pred_points[i], gt_points[i], gt_mask[i])
elif v['function'] == 'edge_loss':
loss_dict[k], misc_dict[k] = edge_loss(pred_points[i], gt_points[i], gt_mask[i])
elif v['function'] == 'mask_bce_loss':
loss_dict[k], misc_dict[k] = mask_bce_loss(pred_mask[i], gt_mask_fin[i], gt_mask_inf[i])
elif v['function'] == 'mask_l2_loss':
loss_dict[k], misc_dict[k] = mask_l2_loss(pred_mask[i], gt_mask_fin[i], gt_mask_inf[i])
else:
raise ValueError(f'Undefined loss function: {v["function"]}')
weight_dict = {'.'.join(k): v for k, v in flatten_nested_dict(weight_dict).items()}
loss_dict = {'.'.join(k): v for k, v in flatten_nested_dict(loss_dict).items()}
loss_ = sum([weight_dict[k] * loss_dict[k] for k in loss_dict], start=torch.tensor(0.0, device=device))
loss_list.append(loss_)
if torch.isnan(loss_).item():
pbar.write(f'NaN loss in process {accelerator.process_index}')
pbar.write(str(loss_dict))
misc_dict = {'.'.join(k): v for k, v in flatten_nested_dict(misc_dict).items()}
records.append({
**{k: v.item() for k, v in loss_dict.items()},
**misc_dict,
})
loss = sum(loss_list) / len(loss_list)
# Backward & update
accelerator.backward(loss)
if accelerator.sync_gradients:
if not enable_mixed_precision and any(torch.isnan(p.grad).any() for p in model.parameters() if p.grad is not None):
if accelerator.is_main_process:
pbar.write(f'NaN gradients, skip update')
optimizer.zero_grad()
continue
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
optimizer.zero_grad()
i_accumulate += 1
lr_scheduler.step()
# EMA update
if enable_ema and accelerator.is_main_process and accelerator.sync_gradients:
ema_model.update_parameters(model)
# Log metrics
if i_step == initial_step or i_step % log_every == 0:
records = [key_average(records)]
records = accelerator.gather_for_metrics(records, use_gather_object=True)
if accelerator.is_main_process:
records = key_average(records)
if enable_mlflow:
try:
mlflow.log_metrics(records, step=i_step)
except Exception as e:
print(f'Error while logging metrics to mlflow: {e}')
records = []
# Save model weight checkpoint
if accelerator.is_main_process and (i_step % save_every == 0):
# NOTE: Writing checkpoint is done in a separate thread to avoid blocking the main process
pbar.write(f'Save checkpoint: {i_step:08d}')
Path(workspace, 'checkpoint').mkdir(parents=True, exist_ok=True)
# Model checkpoint
with io.BytesIO() as f:
torch.save({
'model_config': config['model'],
'model': accelerator.unwrap_model(model).state_dict(),
}, f)
checkpoint_bytes = f.getvalue()
save_checkpoint_executor.submit(
_write_bytes_retry_loop, Path(workspace, 'checkpoint', f'{i_step:08d}.pt'), checkpoint_bytes
)
# Optimizer checkpoint
with io.BytesIO() as f:
torch.save({
'model_config': config['model'],
'step': i_step,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
}, f)
checkpoint_bytes = f.getvalue()
save_checkpoint_executor.submit(
_write_bytes_retry_loop, Path(workspace, 'checkpoint', f'{i_step:08d}_optimizer.pt'), checkpoint_bytes
)
# EMA model checkpoint
if enable_ema:
with io.BytesIO() as f:
torch.save({
'model_config': config['model'],
'model': ema_model.module.state_dict(),
}, f)
checkpoint_bytes = f.getvalue()
save_checkpoint_executor.submit(
_write_bytes_retry_loop, Path(workspace, 'checkpoint', f'{i_step:08d}_ema.pt'), checkpoint_bytes
)
# Latest checkpoint
with io.BytesIO() as f:
torch.save({
'model_config': config['model'],
'step': i_step,
}, f)
checkpoint_bytes = f.getvalue()
save_checkpoint_executor.submit(
_write_bytes_retry_loop, Path(workspace, 'checkpoint', 'latest.pt'), checkpoint_bytes
)
# Visualize
if vis_every > 0 and accelerator.is_main_process and (i_step == initial_step or i_step % vis_every == 0):
unwrapped_model = accelerator.unwrap_model(model)
save_dir = Path(workspace).joinpath(f'vis/step_{i_step:08d}')
save_dir.mkdir(parents=True, exist_ok=True)
with torch.inference_mode():
for i_batch, batch in enumerate(tqdm(batches_for_vis, desc=f'Visualize: {i_step:08d}', leave=False)):
image, gt_depth, gt_mask, gt_intrinsics = batch['image'], batch['depth'], batch['depth_mask'], batch['intrinsics']
image, gt_depth, gt_mask, gt_intrinsics = image.to(device), gt_depth.to(device), gt_mask.to(device), gt_intrinsics.to(device)
output = unwrapped_model.infer(image)
pred_points, pred_depth, pred_mask = output['points'].cpu().numpy(), output['depth'].cpu().numpy(), output['mask'].cpu().numpy()
image = image.cpu().numpy()
for i_instance in range(image.shape[0]):
idx = i_batch * batch_size_forward + i_instance
image_i = (image[i_instance].transpose(1, 2, 0) * 255).astype(np.uint8)
pred_points_i = pred_points[i_instance]
pred_mask_i = pred_mask[i_instance]
pred_depth_i = pred_depth[i_instance]
save_dir.joinpath(f'{idx:04d}').mkdir(parents=True, exist_ok=True)
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/image.jpg')), cv2.cvtColor(image_i, cv2.COLOR_RGB2BGR))
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/points.exr')), cv2.cvtColor(pred_points_i, cv2.COLOR_RGB2BGR), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/mask.png')), pred_mask_i * 255)
cv2.imwrite(str(save_dir.joinpath(f'{idx:04d}/depth_vis.png')), cv2.cvtColor(colorize_depth(pred_depth_i, pred_mask_i), cv2.COLOR_RGB2BGR))
pbar.set_postfix({'loss': loss.item()}, refresh=False)
pbar.update(1)
if __name__ == '__main__':
main() |