File size: 7,780 Bytes
9b33fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# pylint: disable=duplicate-code
"""COCO data loading config for YOLOX object detection."""
from __future__ import annotations

from collections.abc import Sequence

from ml_collections import ConfigDict

from vis4d.config import class_config
from vis4d.config.typing import DataConfig
from vis4d.data.const import CommonKeys as K
from vis4d.data.data_pipe import DataPipe, MultiSampleDataPipe
from vis4d.data.datasets.coco import COCO
from vis4d.data.io import DataBackend
from vis4d.data.loader import build_train_dataloader, default_collate
from vis4d.data.transforms.affine import (
    AffineBoxes2D,
    AffineImages,
    GenAffineParameters,
)
from vis4d.data.transforms.base import RandomApply, compose
from vis4d.data.transforms.flip import FlipBoxes2D, FlipImages
from vis4d.data.transforms.mixup import (
    GenMixupParameters,
    MixupBoxes2D,
    MixupImages,
)
from vis4d.data.transforms.mosaic import (
    GenMosaicParameters,
    MosaicBoxes2D,
    MosaicImages,
)
from vis4d.data.transforms.pad import PadImages
from vis4d.data.transforms.photometric import RandomHSV
from vis4d.data.transforms.post_process import PostProcessBoxes2D
from vis4d.data.transforms.resize import (
    GenResizeParameters,
    ResizeBoxes2D,
    ResizeImages,
)
from vis4d.data.transforms.to_tensor import ToTensor
from vis4d.engine.connectors import data_key, pred_key
from vis4d.zoo.base import get_inference_dataloaders_cfg
from vis4d.zoo.base.callable import get_callable_cfg

CONN_COCO_BBOX_EVAL = {
    "coco_image_id": data_key(K.sample_names),
    "pred_boxes": pred_key("boxes"),
    "pred_scores": pred_key("scores"),
    "pred_classes": pred_key("class_ids"),
}

CONN_COCO_MASK_EVAL = {
    "coco_image_id": data_key(K.sample_names),
    "pred_boxes": pred_key("boxes.boxes"),
    "pred_scores": pred_key("boxes.scores"),
    "pred_classes": pred_key("boxes.class_ids"),
    "pred_masks": pred_key("masks"),
}


def get_train_dataloader(
    data_root: str,
    split: str,
    keys_to_load: Sequence[str],
    data_backend: None | DataBackend,
    image_size: tuple[int, int],
    scaling_ratio_range: tuple[float, float],
    use_mixup: bool,
    samples_per_gpu: int,
    workers_per_gpu: int,
) -> ConfigDict:
    """Get the default train dataloader for COCO detection."""
    # Train Dataset
    train_dataset_cfg = class_config(
        COCO,
        keys_to_load=keys_to_load,
        data_root=data_root,
        split=split,
        remove_empty=False,
        image_channel_mode="BGR",
        data_backend=data_backend,
    )

    # Train Preprocessing
    preprocess_transforms = [
        [
            class_config(GenMosaicParameters, out_shape=image_size),
            class_config(MosaicImages, imresize_backend="cv2"),
            class_config(MosaicBoxes2D),
        ]
    ]

    preprocess_transforms += [
        [
            class_config(
                GenAffineParameters,
                scaling_ratio_range=scaling_ratio_range,
                border=(-image_size[0] // 2, -image_size[1] // 2),
            ),
            class_config(AffineImages, as_int=True),
            class_config(AffineBoxes2D),
        ]
    ]

    if use_mixup:
        preprocess_transforms += [
            [
                class_config(
                    GenMixupParameters,
                    out_shape=image_size,
                    mixup_ratio_dist="const",
                    scale_range=(0.8, 1.6),
                    pad_value=114.0,
                ),
                class_config(MixupImages, imresize_backend="cv2"),
                class_config(MixupBoxes2D),
            ]
        ]

    preprocess_transforms.append(
        [class_config(PostProcessBoxes2D, min_area=1.0)]
    )

    train_batchprocess_cfg = class_config(
        compose,
        transforms=[
            class_config(RandomHSV, same_on_batch=False),
            class_config(
                RandomApply,
                transforms=[
                    class_config(FlipImages),
                    class_config(FlipBoxes2D),
                ],
                probability=0.5,
                same_on_batch=False,
            ),
            class_config(
                GenResizeParameters,
                shape=image_size,
                keep_ratio=True,
                same_on_batch=False,
            ),
            class_config(ResizeImages, imresize_backend="cv2"),
            class_config(ResizeBoxes2D),
            class_config(PadImages, value=114.0, pad2square=True),
            class_config(ToTensor),
        ],
    )

    return class_config(
        build_train_dataloader,
        dataset=class_config(
            MultiSampleDataPipe,
            datasets=train_dataset_cfg,
            preprocess_fn=preprocess_transforms,
        ),
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
        batchprocess_fn=train_batchprocess_cfg,
        collate_fn=get_callable_cfg(default_collate),
        pin_memory=True,
        shuffle=True,
    )


def get_test_dataloader(
    data_root: str,
    split: str,
    keys_to_load: Sequence[str],
    data_backend: None | DataBackend,
    image_size: tuple[int, int],
    samples_per_gpu: int,
    workers_per_gpu: int,
) -> ConfigDict:
    """Get the default test dataloader for COCO detection."""
    # Test Dataset
    test_dataset = class_config(
        COCO,
        keys_to_load=keys_to_load,
        data_root=data_root,
        split=split,
        image_channel_mode="BGR",
        data_backend=data_backend,
    )

    # Test Preprocessing
    preprocess_transforms = [
        class_config(GenResizeParameters, shape=image_size, keep_ratio=True),
        class_config(ResizeImages, imresize_backend="cv2"),
    ]

    test_preprocess_cfg = class_config(
        compose, transforms=preprocess_transforms
    )

    test_batchprocess_cfg = class_config(
        compose,
        transforms=[
            class_config(PadImages, value=114.0, pad2square=True),
            class_config(ToTensor),
        ],
    )

    # Test Dataset Config
    test_dataset_cfg = class_config(
        DataPipe, datasets=test_dataset, preprocess_fn=test_preprocess_cfg
    )

    return get_inference_dataloaders_cfg(
        datasets_cfg=test_dataset_cfg,
        batchprocess_cfg=test_batchprocess_cfg,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
    )


def get_coco_yolox_cfg(
    data_root: str = "data/coco",
    train_split: str = "train2017",
    train_keys_to_load: Sequence[str] = (
        K.images,
        K.boxes2d,
        K.boxes2d_classes,
    ),
    test_split: str = "val2017",
    test_keys_to_load: Sequence[str] = (K.images, K.original_images),
    data_backend: None | ConfigDict = None,
    train_image_size: tuple[int, int] = (640, 640),
    scaling_ratio_range: tuple[float, float] = (0.1, 2.0),
    use_mixup: bool = True,
    test_image_size: tuple[int, int] = (640, 640),
    samples_per_gpu: int = 2,
    workers_per_gpu: int = 2,
) -> DataConfig:
    """Get the default config for COCO detection."""
    data = DataConfig()

    data.train_dataloader = get_train_dataloader(
        data_root=data_root,
        split=train_split,
        keys_to_load=train_keys_to_load,
        data_backend=data_backend,
        image_size=train_image_size,
        scaling_ratio_range=scaling_ratio_range,
        use_mixup=use_mixup,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=workers_per_gpu,
    )

    data.test_dataloader = get_test_dataloader(
        data_root=data_root,
        split=test_split,
        keys_to_load=test_keys_to_load,
        data_backend=data_backend,
        image_size=test_image_size,
        samples_per_gpu=1,
        workers_per_gpu=workers_per_gpu,
    )

    return data