Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,346 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
"""Utility functions for image processing operations."""
from __future__ import annotations
import numpy as np
import torch
from vis4d.common.array import array_to_numpy
from vis4d.common.typing import (
ArrayLike,
ArrayLikeFloat,
ArrayLikeInt,
ArrayLikeUInt,
NDArrayBool,
NDArrayF32,
NDArrayUI8,
)
from vis4d.data.const import AxisMode
from vis4d.op.box.box3d import (
boxes3d_in_image,
boxes3d_to_corners,
transform_boxes3d,
)
from vis4d.op.geometry.projection import project_points
from vis4d.op.geometry.transform import inverse_rigid_transform
from vis4d.vis.util import DEFAULT_COLOR_MAPPING
def _get_box_label(
category: str | None,
score: float | None,
track_id: int | None,
) -> str:
"""Gets a unique string representation for a box definition.
Args:
category (str): The category name
score (float): The confidence score
track_id (int): The track id
Returns:
str: Label for this box of format
'class_name, track_id, score%'
"""
labels = []
if category is not None:
labels.append(category)
if track_id is not None:
labels.append(str(track_id))
if score is not None:
labels.append(f"{score * 100:.1f}%")
return ", ".join(labels)
def _to_binary_mask(
mask: NDArrayUI8, ignore_class: int = 255
) -> tuple[NDArrayUI8, NDArrayUI8]:
"""Converts a mask to binary masks.
Args:
mask (NDArrayUI8): The mask to convert with shape [H, W].
ignore_class (int): The class id to ignore. Defaults to 255.
Returns:
NDArrayUI8: The binary masks with shape [N, H, W].
NDArrayUI8: The class ids for each binary mask.
"""
binary_masks = []
class_ids = []
for class_id in np.unique(mask):
if class_id == ignore_class:
continue
binary_masks.append(mask == class_id)
class_ids.append(class_id)
return np.stack(binary_masks, axis=0), np.array(class_ids, dtype=np.uint8)
def preprocess_boxes(
boxes: ArrayLikeFloat,
scores: None | ArrayLikeFloat = None,
class_ids: None | ArrayLikeInt = None,
track_ids: None | ArrayLikeInt = None,
color_palette: list[tuple[int, int, int]] = DEFAULT_COLOR_MAPPING,
class_id_mapping: dict[int, str] | None = None,
default_color: tuple[int, int, int] = (255, 0, 0),
categories: None | list[str] = None,
) -> tuple[
list[tuple[float, float, float, float]],
list[str],
list[tuple[int, int, int]],
]:
"""Preprocesses bounding boxes.
Converts the given predicted bounding boxes and class/track information
into lists of corners, labels and colors.
Args:
boxes (ArrayLikeFloat): Boxes of shape [N, 4] where N is the number of
boxes and the second channel consists of
(x1,y1,x2,y2) box coordinates.
scores (ArrayLikeFloat): Scores for each box shape [N]
class_ids (ArrayLikeInt): Class id for each box shape [N]
track_ids (ArrayLikeInt): Track id for each box shape [N]
color_palette (list[tuple[float, float, float]]): Color palette for
each id.
class_id_mapping(dict[int, str], optional): Mapping from class id
to color tuple (0-255).
default_color (tuple[int, int, int]): fallback color for boxes of no
class or track id is given.
categories (None | list[str], optional): List of categories for each
box.
Returns:
boxes_proc (list[tuple[float, float, float, float]]): List of box
corners.
labels_proc (list[str]): List of labels.
colors_proc (list[tuple[int, int, int]]): List of colors.
"""
if class_id_mapping is None:
class_id_mapping = {}
boxes = array_to_numpy(boxes, n_dims=2, dtype=np.float32)
scores_np = array_to_numpy(scores, n_dims=1, dtype=np.float32)
class_ids_np = array_to_numpy(class_ids, n_dims=1, dtype=np.int32)
track_ids_np = array_to_numpy(track_ids, n_dims=1, dtype=np.int32)
boxes_proc: list[tuple[float, float, float, float]] = []
colors_proc: list[tuple[int, int, int]] = []
labels_proc: list[str] = []
# Only one box provided
if len(boxes.shape) == 1:
# unsqueeze one dimension
boxes = boxes.reshape(1, -1)
for idx in range(boxes.shape[0]):
class_id = None if class_ids_np is None else class_ids_np[idx].item()
score = None if scores_np is None else scores_np[idx].item()
track_id = None if track_ids_np is None else track_ids_np[idx].item()
if track_id is not None:
color = color_palette[track_id % len(color_palette)]
elif class_id is not None:
color = color_palette[class_id % len(color_palette)]
else:
color = default_color
boxes_proc.append(
(
boxes[idx][0].item(),
boxes[idx][1].item(),
boxes[idx][2].item(),
boxes[idx][3].item(),
)
)
colors_proc.append(color)
if categories is not None:
category = categories[idx]
elif class_id is not None:
category = class_id_mapping.get(class_id, str(class_id))
else:
category = None
labels_proc.append(_get_box_label(category, score, track_id))
return boxes_proc, labels_proc, colors_proc
def preprocess_boxes3d(
image_hw: tuple[int, int],
boxes3d: ArrayLikeFloat,
intrinsics: ArrayLikeFloat,
extrinsics: ArrayLikeFloat | None = None,
scores: None | ArrayLikeFloat = None,
class_ids: None | ArrayLikeInt = None,
track_ids: None | ArrayLikeInt = None,
color_palette: list[tuple[int, int, int]] = DEFAULT_COLOR_MAPPING,
class_id_mapping: dict[int, str] | None = None,
default_color: tuple[int, int, int] = (255, 0, 0),
axis_mode: AxisMode = AxisMode.OPENCV,
categories: None | list[str] = None,
) -> tuple[
list[tuple[float, float, float]],
list[list[tuple[float, float, float]]],
list[str],
list[tuple[int, int, int]],
list[int | None],
]:
"""Preprocesses bounding boxes.
Converts the given predicted bounding boxes and class/track information
into lists of centers, corners, labels, colors and track_ids.
"""
if class_id_mapping is None:
class_id_mapping = {}
boxes3d = array_to_numpy(boxes3d, n_dims=2, dtype=np.float32)
intrinsics = array_to_numpy(intrinsics, n_dims=2, dtype=np.float32)
boxes3d = torch.from_numpy(boxes3d)
intrinsics = torch.from_numpy(intrinsics)
if axis_mode != AxisMode.OPENCV:
assert (
extrinsics is not None
), "extrinsics must be provided to move boxes to camera coordiante."
extrinsics = array_to_numpy(extrinsics, n_dims=2, dtype=np.float32)
extrinsics = torch.from_numpy(extrinsics)
global_to_cam = inverse_rigid_transform(extrinsics)
boxes3d_cam = transform_boxes3d(
boxes3d,
global_to_cam,
source_axis_mode=AxisMode.ROS,
target_axis_mode=AxisMode.OPENCV,
)
else:
boxes3d_cam = boxes3d
corners = boxes3d_to_corners(boxes3d_cam, axis_mode=AxisMode.OPENCV)
mask = boxes3d_in_image(corners, intrinsics, image_hw)
boxes3d_np = boxes3d.numpy()
corners_np = corners.numpy()
scores_np = array_to_numpy(scores, n_dims=1, dtype=np.float32)
class_ids_np = array_to_numpy(class_ids, n_dims=1, dtype=np.int32)
track_ids_np = array_to_numpy(track_ids, n_dims=1, dtype=np.int32)
centers_proc: list[tuple[float, float, float]] = []
corners_proc: list[list[tuple[float, float, float]]] = []
colors_proc: list[tuple[int, int, int]] = []
labels_proc: list[str] = []
track_ids_proc: list[int | None] = []
if len(mask) == 1:
if not mask[0]:
return (
centers_proc,
corners_proc,
labels_proc,
colors_proc,
track_ids_proc,
)
else:
boxes3d_np = boxes3d_np[mask]
corners_np = corners_np[mask]
scores_np = scores_np[mask] if scores_np is not None else None
class_ids_np = class_ids_np[mask] if class_ids_np is not None else None
track_ids_np = track_ids_np[mask] if track_ids_np is not None else None
for idx in range(corners_np.shape[0]):
class_id = None if class_ids_np is None else class_ids_np[idx].item()
score = None if scores_np is None else scores_np[idx].item()
track_id = None if track_ids_np is None else track_ids_np[idx].item()
if track_id is not None:
color = color_palette[track_id % len(color_palette)]
elif class_id is not None:
color = color_palette[class_id % len(color_palette)]
else:
color = default_color
centers_proc.append(
(
boxes3d_np[idx][0].item(),
boxes3d_np[idx][1].item(),
boxes3d_np[idx][2].item(),
)
)
corners_proc.append([tuple(pts) for pts in corners_np[idx].tolist()])
colors_proc.append(color)
if categories is not None:
category = categories[idx]
elif class_id is not None:
category = class_id_mapping.get(class_id, str(class_id))
else:
category = None
labels_proc.append(_get_box_label(category, score, track_id))
track_ids_proc.append(track_id)
return centers_proc, corners_proc, labels_proc, colors_proc, track_ids_proc
def preprocess_masks(
masks: ArrayLikeUInt,
class_ids: ArrayLikeInt | None = None,
color_mapping: list[tuple[int, int, int]] = DEFAULT_COLOR_MAPPING,
) -> tuple[list[NDArrayBool], list[tuple[int, int, int]]]:
"""Preprocesses predicted semantic or instance segmentation masks.
Args:
masks (ArrayLikeUInt): Masks of shape [H, W] or [N, H, W]. If the
masks are of shape [H, W], they are assumed to be semantic
segmentation masks, i.e. each pixel contains the class id.
If the masks are of shape [N, H, W], they are assumed to be
the binary masks of N instances.
class_ids (ArrayLikeInt, None): An array with class ids for each mask
shape [N]. If None, then the masks must be semantic segmentation
masks and the class ids are extracted from the masks.
color_mapping (list[tuple[int, int, int]]): Color mapping for
each class.
Returns:
tuple[list[masks], list[colors]]: Returns a list with all masks of
shape [H, W] as well as a list with the corresponding colors.
Raises:
ValueError: If the masks have an invalid shape.
"""
masks_np = array_to_numpy(masks, n_dims=None, dtype=np.uint8)
if len(masks_np.shape) == 2:
masks_np, class_ids = _to_binary_mask(masks_np)
elif len(masks_np.shape) == 3:
if class_ids is not None:
class_ids = array_to_numpy(class_ids, n_dims=1, dtype=np.int32)
else:
raise ValueError(
f"Expected masks to have 2 or 3 dimensions, but got "
f"{len(masks_np.shape)}"
)
masks_binary = masks_np.astype(bool)
mask_list: list[NDArrayBool] = []
color_list: list[tuple[int, int, int]] = []
for idx in range(masks_binary.shape[0]):
mask = masks_binary[idx, ...]
class_id = None if class_ids is None else class_ids[idx].item()
if class_id is not None:
color = color_mapping[class_id % len(color_mapping)]
else:
color = color_mapping[idx % len(color_mapping)]
mask_list.append(mask)
color_list.append(color)
return mask_list, color_list
def preprocess_image(image: ArrayLike, mode: str = "RGB") -> NDArrayUI8:
"""Validate and convert input image.
Args:
image: CHW or HWC image (ArrayLike) with C = 3.
mode: input channel format (e.g. BGR, HSV).
Returns:
np.array[uint8]: Processed image_np in RGB.
"""
image_np = array_to_numpy(image, n_dims=3, dtype=np.float32)
# Convert torch to numpy
assert len(image_np.shape) == 3
assert image_np.shape[0] == 3 or image_np.shape[-1] == 3
# Convert torch to numpy convention
if not image_np.shape[-1] == 3:
image_np = np.transpose(image_np, (1, 2, 0))
# Convert image_np to [0, 255]
min_val, max_val = (
np.min(image_np, axis=(0, 1)),
np.max(image_np, axis=(0, 1)),
)
image_np = image_np.astype(np.float32)
image_np = (image_np - min_val) / (max_val - min_val) * 255.0
if mode == "BGR":
image_np = image_np[..., [2, 1, 0]]
return image_np.astype(np.uint8)
def get_intersection_point(
point1: tuple[float, float, float],
point2: tuple[float, float, float],
camera_near_clip: float,
) -> tuple[float, float, float]:
"""Get point intersecting with camera near plane on line point1 -> point2.
The line is defined by two points in camera coordinates and their depth.
Args:
point1 (tuple[float x 3]): First point in camera coordinates.
point2 (tuple[float x 3]): Second point in camera coordinates
camera_near_clip (float): camera_near_clip
Returns:
tuple[float, float, float]: The intersection point in camera
coordiantes.
"""
c1, c2, c3 = 0, 0, camera_near_clip
a1, a2, a3 = 0, 0, 1
x1, y1, z1 = point1
x2, y2, z2 = point2
k_up = abs(a1 * (x1 - c1) + a2 * (y1 - c2) + a3 * (z1 - c3))
k_down = abs(a1 * (x1 - x2) + a2 * (y1 - y2) + a3 * (z1 - z2))
if k_up > k_down:
k = 1.0
else:
k = k_up / k_down
return ((1 - k) * x1 + k * x2, (1 - k) * y1 + k * y2, camera_near_clip)
def project_point(
point: tuple[float, float, float], intrinsics: NDArrayF32
) -> tuple[float, float]:
"""Project single point into the image plane."""
projected_x, projected_y = (
project_points(
torch.from_numpy(np.array([point], dtype=np.float32)),
torch.from_numpy(intrinsics),
)
.squeeze(0)
.numpy()
.tolist()
)
return projected_x, projected_y
|