Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,754 Bytes
9b33fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
"""BEV Bounding box 3D visualizer."""
from __future__ import annotations
import os
from collections import defaultdict
from dataclasses import dataclass
import numpy as np
import torch
from torch import Tensor
from vis4d.common.array import array_to_numpy
from vis4d.common.typing import (
ArgsType,
ArrayLikeFloat,
ArrayLikeInt,
NDArrayF32,
NDArrayUI8,
)
from vis4d.data.const import AxisMode
from vis4d.op.box.box3d import boxes3d_to_corners, transform_boxes3d
from vis4d.op.geometry.transform import inverse_rigid_transform
from vis4d.vis.base import Visualizer
from vis4d.vis.util import generate_color_map
from .canvas import CanvasBackend, PillowCanvasBackend
from .viewer import ImageViewerBackend, MatplotlibImageViewer
@dataclass
class BEVBox:
"""Dataclass storing box informations."""
corners: list[tuple[float, float]]
color: tuple[int, int, int]
track_id: int | None
@dataclass
class DataSample:
"""Dataclass storing a data sample that can be visualized."""
name: str
extrinsics: NDArrayF32
sequence_name: str | None
boxes: list[BEVBox]
class BEVBBox3DVisualizer(Visualizer):
"""BEV Bounding box 3D visualizer class."""
def __init__(
self,
*args: ArgsType,
n_colors: int = 50,
file_type: str = "png",
max_range: float = 60,
scale: float = 10,
width: int = 2,
margin: int = 10,
axis_mode: AxisMode = AxisMode.ROS,
trajectory_length: int = 10,
plot_trajectory: bool = True,
canvas: CanvasBackend | None = None,
viewer: ImageViewerBackend | None = None,
**kwargs: ArgsType,
) -> None:
"""Creates a new Visualizer for BEV Image and Bounding Boxes.
Args:
n_colors (int): How many colors should be used for the internal
color map. Defaults to 100.
file_type (str): Desired file type. Defaults to "png".
max_range (float): Maximum range (meters) of the BEV image.
Defaults to 60.
scale (float): Scale of the BEV image. Defaults to 10. Means that
1m in the BEV image is 10px.
width (int): Width of the drawn bounding boxes. Defaults to 2.
margin (int): Margin of the BEV image. Defaults to 10.
axis_mode (AxisMode): Axis mode for the input bboxes. Defaults to
AxisMode.ROS (i.e. global coordinate).
trajectory_length (int): How many past frames should be used to
draw the trajectory. Defaults to 10.
plot_trajectory (bool): If the trajectory should be plotted.
Defaults to True.
canvas (CanvasBackend): Backend that is used to draw on images. If
None a PillowCanvasBackend is used.
viewer (ImageViewerBackend): Backend that is used show images. If
None a MatplotlibImageViewer is used.
"""
super().__init__(*args, **kwargs)
self._samples: list[DataSample] = []
self.axis_mode = axis_mode
self.trajectories: dict[int, list[tuple[float, float, float]]] = (
defaultdict(list)
)
self.trajectory_length = trajectory_length
self.plot_trajectory = plot_trajectory
self.color_palette = generate_color_map(n_colors)
self.file_type = file_type
self.max_range = max_range
self.scale = scale
# Generate figure size
self.figure_hw = (
int(max_range * scale + margin) * 2,
int(max_range * scale + margin) * 2,
)
self.width = width
self.canvas = canvas if canvas is not None else PillowCanvasBackend()
self.viewer = viewer if viewer is not None else MatplotlibImageViewer()
def __repr__(self) -> str:
"""Return string representation."""
return "BEVBBox3DVisualizer"
def reset(self) -> None:
"""Reset visualizer."""
self._samples.clear()
def process( # pylint: disable=arguments-differ
self,
cur_iter: int,
sample_names: list[list[str]] | list[str],
boxes3d: list[ArrayLikeFloat],
extrinsics: list[ArrayLikeFloat] | ArrayLikeFloat,
class_ids: None | list[ArrayLikeInt] = None,
track_ids: None | list[ArrayLikeInt] = None,
sequence_names: None | list[str] = None,
) -> None:
"""Processes a batch of data."""
# Handle multi-sensor connector results from multi-sensor data dict
if isinstance(sample_names[0], list) and isinstance(extrinsics, list):
sample_names = sample_names[0]
extrinsics = extrinsics[0]
if self._run_on_batch(cur_iter):
for batch, sample_name in enumerate(sample_names):
self.process_single(
sample_name, # type: ignore
boxes3d[batch],
extrinsics[batch], # type: ignore
class_ids[batch] if class_ids is not None else None,
track_ids[batch] if track_ids is not None else None,
(
sequence_names[batch]
if sequence_names is not None
else None
),
)
for tid in self.trajectories:
if len(self.trajectories[tid]) > self.trajectory_length:
self.trajectories[tid].pop(0)
def process_single(
self,
sample_name: str,
boxes3d: ArrayLikeFloat,
extrinsics: ArrayLikeFloat,
class_ids: None | ArrayLikeInt = None,
track_ids: None | ArrayLikeInt = None,
sequence_name: None | str = None,
) -> None:
"""Process single batch."""
boxes3d = array_to_numpy(boxes3d, n_dims=2, dtype=np.float32)
extrinsics_np = array_to_numpy(extrinsics, n_dims=2, dtype=np.float32)
data_sample = DataSample(
sample_name,
extrinsics_np,
sequence_name,
[],
)
boxes3d_lidar, boxes3d = self._get_lidar_and_global_boxes3d(
boxes3d, extrinsics_np
)
corners = boxes3d_to_corners(
boxes3d_lidar, axis_mode=AxisMode.LIDAR
).numpy()
track_ids_np = array_to_numpy(track_ids, n_dims=1, dtype=np.int32)
class_ids_np = array_to_numpy(class_ids, n_dims=1, dtype=np.int32)
for i in range(corners.shape[0]):
track_id = None if track_ids_np is None else int(track_ids_np[i])
class_id = None if class_ids_np is None else int(class_ids_np[i])
if track_id is not None:
color = self.color_palette[track_id % len(self.color_palette)]
self.trajectories[track_id].append(
tuple(boxes3d[i][:3].tolist())
)
elif class_id is not None:
color = self.color_palette[class_id % len(self.color_palette)]
else:
color = (255, 0, 0)
data_sample.boxes.append(
BEVBox(
[tuple(pts) for pts in corners[i, :4, :2]],
color,
track_id=track_id,
)
)
self._samples.append(data_sample)
def _get_lidar_and_global_boxes3d(
self, boxes3d: NDArrayF32, extrinsics: NDArrayF32
) -> tuple[Tensor, NDArrayF32]:
"""Get boxes3d in lidar and global frame."""
if self.axis_mode == AxisMode.ROS:
global_to_lidar = inverse_rigid_transform(
torch.from_numpy(extrinsics)
)
boxes3d_global = boxes3d
boxes3d_lidar = transform_boxes3d(
torch.from_numpy(boxes3d),
global_to_lidar,
source_axis_mode=self.axis_mode,
target_axis_mode=AxisMode.LIDAR,
)
elif self.axis_mode == AxisMode.LIDAR:
boxes3d_global = transform_boxes3d(
torch.from_numpy(boxes3d),
torch.from_numpy(extrinsics),
source_axis_mode=self.axis_mode,
target_axis_mode=AxisMode.ROS,
).numpy()
boxes3d_lidar = torch.from_numpy(boxes3d)
else:
raise NotImplementedError(
f"Axis mode {self.axis_mode} not supported"
)
return boxes3d_lidar, boxes3d_global
def show(self, cur_iter: int, blocking: bool = True) -> None:
"""Shows the processed images in a interactive window.
Args:
cur_iter (int): Current iteration.
blocking (bool): If the visualizer should be blocking i.e. wait for
human input for each image. Defaults to True.
"""
if self._run_on_batch(cur_iter):
image_data = [self._draw_image(d) for d in self._samples]
self.viewer.show_images(image_data, blocking=blocking)
def _map_lidar_to_bev_image(
self, point_x: float, point_y: float
) -> tuple[float, float]:
"""Maps a point from lidar frame to BEV image frame."""
return (
self.scale * point_x + self.figure_hw[1] // 2,
self.scale * -point_y + self.figure_hw[0] // 2,
)
def _draw_image(self, sample: DataSample) -> NDArrayUI8:
"""Visualizes the datasample and returns is as numpy image.
Args:
sample (DataSample): The data sample to visualize.
Returns:
NDArrayUI8: A image with the visualized data sample.
"""
self.canvas.create_canvas(image_hw=self.figure_hw)
img_center = self._map_lidar_to_bev_image(0, 0)
# Mark range every 10m
for i in range(int(self.max_range / 10), 0, -1):
distance = int(10 * self.scale * i)
grey_level = 140 + i * 10
self.canvas.draw_circle(
img_center, (grey_level, grey_level, grey_level), distance
)
self.canvas.draw_text(
(img_center[0] + distance - 25, img_center[1]),
f"{10 * i} m",
color=(0, 0, 0),
)
# Draw ego car
self.canvas.draw_rotated_box(
[
(img_center[0] - self.scale, img_center[1] - self.scale * 2),
(img_center[0] + self.scale, img_center[1] - self.scale * 2),
(img_center[0] - self.scale, img_center[1] + self.scale * 2),
(img_center[0] + self.scale, img_center[1] + self.scale * 2),
],
(0, 0, 0),
self.width,
)
global_to_lidar = inverse_rigid_transform(
torch.from_numpy(sample.extrinsics)
).numpy()
for box in sample.boxes:
corners = [
self._map_lidar_to_bev_image(pts[0], pts[1])
for pts in box.corners
]
self.canvas.draw_rotated_box(corners, box.color, self.width)
if self.plot_trajectory:
assert (
box.track_id is not None
), "Track id must be set to plot trajectory."
trajectory = self.trajectories[box.track_id]
for center in trajectory:
# Move global center to current lidar frame
center_lidar = np.dot(global_to_lidar, [*center, 1])[:3]
bev_center = self._map_lidar_to_bev_image(
center_lidar[0], center_lidar[1]
)
self.canvas.draw_circle(
bev_center, box.color, self.width * 2
)
return self.canvas.as_numpy_image()
def save_to_disk(self, cur_iter: int, output_folder: str) -> None:
"""Saves the visualization to disk.
Writes all processes samples to the output folder naming each image
<sample.image_name>.<filetype>.
Args:
cur_iter (int): Current iteration.
output_folder (str): Folder where the output should be written.
"""
if self._run_on_batch(cur_iter):
for sample in self._samples:
output_dir = output_folder
sample_name = f"{sample.name}.{self.file_type}"
self._draw_image(sample)
if sample.sequence_name is not None:
output_dir = os.path.join(output_dir, sample.sequence_name)
output_dir = os.path.join(output_dir, "BEV")
os.makedirs(output_dir, exist_ok=True)
self.canvas.save_to_disk(os.path.join(output_dir, sample_name))
|