Spaces:
Runtime error
Runtime error
File size: 10,403 Bytes
b6dd358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import numpy as np
import torch
from torch_utils import training_stats
from torch_utils import misc
from torch_utils.ops import conv2d_gradfix
from losses.pcp import PerceptualLoss
#----------------------------------------------------------------------------
class Loss:
def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, sync, gain): # to be overridden by subclass
raise NotImplementedError()
#----------------------------------------------------------------------------
class TwoStageLoss(Loss):
def __init__(self, device, G_mapping, G_synthesis, D, augment_pipe=None, style_mixing_prob=0.9, r1_gamma=10, pl_batch_shrink=2, pl_decay=0.01, pl_weight=2, truncation_psi=1, pcp_ratio=1.0):
super().__init__()
self.device = device
self.G_mapping = G_mapping
self.G_synthesis = G_synthesis
self.D = D
self.augment_pipe = augment_pipe
self.style_mixing_prob = style_mixing_prob
self.r1_gamma = r1_gamma
self.pl_batch_shrink = pl_batch_shrink
self.pl_decay = pl_decay
self.pl_weight = pl_weight
self.pl_mean = torch.zeros([], device=device)
self.truncation_psi = truncation_psi
self.pcp = PerceptualLoss(layer_weights=dict(conv4_4=1/4, conv5_4=1/2)).to(device)
self.pcp_ratio = pcp_ratio
def run_G(self, img_in, mask_in, z, c, sync):
with misc.ddp_sync(self.G_mapping, sync):
ws = self.G_mapping(z, c, truncation_psi=self.truncation_psi)
if self.style_mixing_prob > 0:
with torch.autograd.profiler.record_function('style_mixing'):
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
ws[:, cutoff:] = self.G_mapping(torch.randn_like(z), c, truncation_psi=self.truncation_psi, skip_w_avg_update=True)[:, cutoff:]
with misc.ddp_sync(self.G_synthesis, sync):
img, img_stg1 = self.G_synthesis(img_in, mask_in, ws, return_stg1=True)
return img, ws, img_stg1
def run_D(self, img, mask, img_stg1, c, sync):
# if self.augment_pipe is not None:
# # img = self.augment_pipe(img)
# # !!!!! have to remove the color transform
# tmp_img = torch.cat([img, mask], dim=1)
# tmp_img = self.augment_pipe(tmp_img)
# img, mask = torch.split(tmp_img, [3, 1])
with misc.ddp_sync(self.D, sync):
logits, logits_stg1 = self.D(img, mask, img_stg1, c)
return logits, logits_stg1
def accumulate_gradients(self, phase, real_img, mask, real_c, gen_z, gen_c, sync, gain):
assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth']
do_Gmain = (phase in ['Gmain', 'Gboth'])
do_Dmain = (phase in ['Dmain', 'Dboth'])
do_Gpl = (phase in ['Greg', 'Gboth']) and (self.pl_weight != 0)
do_Dr1 = (phase in ['Dreg', 'Dboth']) and (self.r1_gamma != 0)
# Gmain: Maximize logits for generated images.
if do_Gmain:
with torch.autograd.profiler.record_function('Gmain_forward'):
gen_img, _gen_ws, gen_img_stg1 = self.run_G(real_img, mask, gen_z, gen_c, sync=(sync and not do_Gpl)) # May get synced by Gpl.
gen_logits, gen_logits_stg1 = self.run_D(gen_img, mask, gen_img_stg1, gen_c, sync=False)
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
training_stats.report('Loss/scores/fake_s1', gen_logits_stg1)
training_stats.report('Loss/signs/fake_s1', gen_logits_stg1.sign())
loss_Gmain = torch.nn.functional.softplus(-gen_logits) # -log(sigmoid(gen_logits))
training_stats.report('Loss/G/loss', loss_Gmain)
loss_Gmain_stg1 = torch.nn.functional.softplus(-gen_logits_stg1)
training_stats.report('Loss/G/loss_s1', loss_Gmain_stg1)
# just for showing
l1_loss = torch.mean(torch.abs(gen_img - real_img))
training_stats.report('Loss/G/l1_loss', l1_loss)
pcp_loss, _ = self.pcp(gen_img, real_img)
training_stats.report('Loss/G/pcp_loss', pcp_loss)
with torch.autograd.profiler.record_function('Gmain_backward'):
loss_Gmain_all = loss_Gmain + loss_Gmain_stg1 + pcp_loss * self.pcp_ratio
loss_Gmain_all.mean().mul(gain).backward()
# # Gpl: Apply path length regularization.
# if do_Gpl:
# with torch.autograd.profiler.record_function('Gpl_forward'):
# batch_size = gen_z.shape[0] // self.pl_batch_shrink
# gen_img, gen_ws = self.run_G(real_img[:batch_size], mask[:batch_size], gen_z[:batch_size], gen_c[:batch_size], sync=sync)
# pl_noise = torch.randn_like(gen_img) / np.sqrt(gen_img.shape[2] * gen_img.shape[3])
# with torch.autograd.profiler.record_function('pl_grads'), conv2d_gradfix.no_weight_gradients():
# pl_grads = torch.autograd.grad(outputs=[(gen_img * pl_noise).sum()], inputs=[gen_ws], create_graph=True, only_inputs=True)[0]
# pl_lengths = pl_grads.square().sum(2).mean(1).sqrt()
# pl_mean = self.pl_mean.lerp(pl_lengths.mean(), self.pl_decay)
# self.pl_mean.copy_(pl_mean.detach())
# pl_penalty = (pl_lengths - pl_mean).square()
# training_stats.report('Loss/pl_penalty', pl_penalty)
# loss_Gpl = pl_penalty * self.pl_weight
# training_stats.report('Loss/G/reg', loss_Gpl)
# with torch.autograd.profiler.record_function('Gpl_backward'):
# (gen_img[:, 0, 0, 0] * 0 + loss_Gpl).mean().mul(gain).backward()
# Dmain: Minimize logits for generated images.
loss_Dgen = 0
loss_Dgen_stg1 = 0
if do_Dmain:
with torch.autograd.profiler.record_function('Dgen_forward'):
gen_img, _gen_ws, gen_img_stg1 = self.run_G(real_img, mask, gen_z, gen_c, sync=False)
gen_logits, gen_logits_stg1 = self.run_D(gen_img, mask, gen_img_stg1, gen_c, sync=False) # Gets synced by loss_Dreal.
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
loss_Dgen = torch.nn.functional.softplus(gen_logits) # -log(1 - sigmoid(gen_logits))
training_stats.report('Loss/scores/fake_s1', gen_logits_stg1)
training_stats.report('Loss/signs/fake_s1', gen_logits_stg1.sign())
loss_Dgen_stg1 = torch.nn.functional.softplus(gen_logits_stg1) # -log(1 - sigmoid(gen_logits))
with torch.autograd.profiler.record_function('Dgen_backward'):
loss_Dgen_all = loss_Dgen + loss_Dgen_stg1
loss_Dgen_all.mean().mul(gain).backward()
# Dmain: Maximize logits for real images.
# Dr1: Apply R1 regularization.
if do_Dmain or do_Dr1:
name = 'Dreal_Dr1' if do_Dmain and do_Dr1 else 'Dreal' if do_Dmain else 'Dr1'
with torch.autograd.profiler.record_function(name + '_forward'):
real_img_tmp = real_img.detach().requires_grad_(do_Dr1)
mask_tmp = mask.detach().requires_grad_(do_Dr1)
real_img_tmp_stg1 = real_img.detach().requires_grad_(do_Dr1)
real_logits, real_logits_stg1 = self.run_D(real_img_tmp, mask_tmp, real_img_tmp_stg1, real_c, sync=sync)
training_stats.report('Loss/scores/real', real_logits)
training_stats.report('Loss/signs/real', real_logits.sign())
training_stats.report('Loss/scores/real_s1', real_logits_stg1)
training_stats.report('Loss/signs/real_s1', real_logits_stg1.sign())
loss_Dreal = 0
loss_Dreal_stg1 = 0
if do_Dmain:
loss_Dreal = torch.nn.functional.softplus(-real_logits) # -log(sigmoid(real_logits))
loss_Dreal_stg1 = torch.nn.functional.softplus(-real_logits_stg1) # -log(sigmoid(real_logits))
training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)
training_stats.report('Loss/D/loss_s1', loss_Dgen_stg1 + loss_Dreal_stg1)
loss_Dr1 = 0
loss_Dr1_stg1 = 0
if do_Dr1:
with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp], create_graph=True, only_inputs=True)[0]
r1_grads_stg1 = torch.autograd.grad(outputs=[real_logits_stg1.sum()], inputs=[real_img_tmp_stg1], create_graph=True, only_inputs=True)[0]
r1_penalty = r1_grads.square().sum([1,2,3])
loss_Dr1 = r1_penalty * (self.r1_gamma / 2)
training_stats.report('Loss/r1_penalty', r1_penalty)
training_stats.report('Loss/D/reg', loss_Dr1)
r1_penalty_stg1 = r1_grads_stg1.square().sum([1, 2, 3])
loss_Dr1_stg1 = r1_penalty_stg1 * (self.r1_gamma / 2)
training_stats.report('Loss/r1_penalty_s1', r1_penalty_stg1)
training_stats.report('Loss/D/reg_s1', loss_Dr1_stg1)
with torch.autograd.profiler.record_function(name + '_backward'):
((real_logits + real_logits_stg1) * 0 + loss_Dreal + loss_Dreal_stg1 + loss_Dr1 + loss_Dr1_stg1).mean().mul(gain).backward()
#----------------------------------------------------------------------------
|