Spaces:
Runtime error
Runtime error
File size: 42,873 Bytes
b6dd358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
import numpy as np
import math
import sys
sys.path.insert(0, '../')
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch_utils import misc
from torch_utils import persistence
from networks.basic_module import FullyConnectedLayer, Conv2dLayer, MappingNet, MinibatchStdLayer, DisFromRGB, DisBlock, StyleConv, ToRGB, get_style_code
@misc.profiled_function
def nf(stage, channel_base=32768, channel_decay=1.0, channel_max=512):
NF = {512: 64, 256: 128, 128: 256, 64: 512, 32: 512, 16: 512, 8: 512, 4: 512}
return NF[2 ** stage]
@persistence.persistent_class
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = FullyConnectedLayer(in_features=in_features, out_features=hidden_features, activation='lrelu')
self.fc2 = FullyConnectedLayer(in_features=hidden_features, out_features=out_features)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
@misc.profiled_function
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
@misc.profiled_function
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
@persistence.persistent_class
class Conv2dLayerPartial(nn.Module):
def __init__(self,
in_channels, # Number of input channels.
out_channels, # Number of output channels.
kernel_size, # Width and height of the convolution kernel.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations.
conv_clamp = None, # Clamp the output to +-X, None = disable clamping.
trainable = True, # Update the weights of this layer during training?
):
super().__init__()
self.conv = Conv2dLayer(in_channels, out_channels, kernel_size, bias, activation, up, down, resample_filter,
conv_clamp, trainable)
self.weight_maskUpdater = torch.ones(1, 1, kernel_size, kernel_size)
self.slide_winsize = kernel_size ** 2
self.stride = down
self.padding = kernel_size // 2 if kernel_size % 2 == 1 else 0
def forward(self, x, mask=None):
if mask is not None:
with torch.no_grad():
if self.weight_maskUpdater.type() != x.type():
self.weight_maskUpdater = self.weight_maskUpdater.to(x)
update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride, padding=self.padding)
mask_ratio = self.slide_winsize / (update_mask + 1e-8)
update_mask = torch.clamp(update_mask, 0, 1) # 0 or 1
mask_ratio = torch.mul(mask_ratio, update_mask)
x = self.conv(x)
x = torch.mul(x, mask_ratio)
return x, update_mask
else:
x = self.conv(x)
return x, None
@persistence.persistent_class
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, down_ratio=1, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = FullyConnectedLayer(in_features=dim, out_features=dim)
self.k = FullyConnectedLayer(in_features=dim, out_features=dim)
self.v = FullyConnectedLayer(in_features=dim, out_features=dim)
self.proj = FullyConnectedLayer(in_features=dim, out_features=dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask_windows=None, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
norm_x = F.normalize(x, p=2.0, dim=-1)
q = self.q(norm_x).reshape(B_, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
k = self.k(norm_x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 3, 1)
v = self.v(x).view(B_, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k) * self.scale
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
if mask_windows is not None:
attn_mask_windows = mask_windows.squeeze(-1).unsqueeze(1).unsqueeze(1)
attn = attn + attn_mask_windows.masked_fill(attn_mask_windows == 0, float(-100.0)).masked_fill(
attn_mask_windows == 1, float(0.0))
with torch.no_grad():
mask_windows = torch.clamp(torch.sum(mask_windows, dim=1, keepdim=True), 0, 1).repeat(1, N, 1)
attn = self.softmax(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
return x, mask_windows
@persistence.persistent_class
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, down_ratio=1, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
if self.shift_size > 0:
down_ratio = 1
self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
down_ratio=down_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
proj_drop=drop)
self.fuse = FullyConnectedLayer(in_features=dim * 2, out_features=dim, activation='lrelu')
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
attn_mask = self.calculate_mask(self.input_resolution)
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def calculate_mask(self, x_size):
# calculate attention mask for SW-MSA
H, W = x_size
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
return attn_mask
def forward(self, x, x_size, mask=None):
# H, W = self.input_resolution
H, W = x_size
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = x.view(B, H, W, C)
if mask is not None:
mask = mask.view(B, H, W, 1)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
if mask is not None:
shifted_mask = torch.roll(mask, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
if mask is not None:
shifted_mask = mask
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
if mask is not None:
mask_windows = window_partition(shifted_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size, 1)
else:
mask_windows = None
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
if self.input_resolution == x_size:
attn_windows, mask_windows = self.attn(x_windows, mask_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
else:
attn_windows, mask_windows = self.attn(x_windows, mask_windows, mask=self.calculate_mask(x_size).to(x.device)) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
if mask is not None:
mask_windows = mask_windows.view(-1, self.window_size, self.window_size, 1)
shifted_mask = window_reverse(mask_windows, self.window_size, H, W)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
if mask is not None:
mask = torch.roll(shifted_mask, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
if mask is not None:
mask = shifted_mask
x = x.view(B, H * W, C)
if mask is not None:
mask = mask.view(B, H * W, 1)
# FFN
x = self.fuse(torch.cat([shortcut, x], dim=-1))
x = self.mlp(x)
return x, mask
@persistence.persistent_class
class PatchMerging(nn.Module):
def __init__(self, in_channels, out_channels, down=2):
super().__init__()
self.conv = Conv2dLayerPartial(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation='lrelu',
down=down,
)
self.down = down
def forward(self, x, x_size, mask=None):
x = token2feature(x, x_size)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(x, mask)
if self.down != 1:
ratio = 1 / self.down
x_size = (int(x_size[0] * ratio), int(x_size[1] * ratio))
x = feature2token(x)
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class PatchUpsampling(nn.Module):
def __init__(self, in_channels, out_channels, up=2):
super().__init__()
self.conv = Conv2dLayerPartial(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation='lrelu',
up=up,
)
self.up = up
def forward(self, x, x_size, mask=None):
x = token2feature(x, x_size)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(x, mask)
if self.up != 1:
x_size = (int(x_size[0] * self.up), int(x_size[1] * self.up))
x = feature2token(x)
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size, down_ratio=1,
mlp_ratio=2., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# patch merging layer
if downsample is not None:
# self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
self.downsample = downsample
else:
self.downsample = None
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, down_ratio=down_ratio, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
self.conv = Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, activation='lrelu')
def forward(self, x, x_size, mask=None):
if self.downsample is not None:
x, x_size, mask = self.downsample(x, x_size, mask)
identity = x
for blk in self.blocks:
if self.use_checkpoint:
x, mask = checkpoint.checkpoint(blk, x, x_size, mask)
else:
x, mask = blk(x, x_size, mask)
if mask is not None:
mask = token2feature(mask, x_size)
x, mask = self.conv(token2feature(x, x_size), mask)
x = feature2token(x) + identity
if mask is not None:
mask = feature2token(mask)
return x, x_size, mask
@persistence.persistent_class
class ToToken(nn.Module):
def __init__(self, in_channels=3, dim=128, kernel_size=5, stride=1):
super().__init__()
self.proj = Conv2dLayerPartial(in_channels=in_channels, out_channels=dim, kernel_size=kernel_size, activation='lrelu')
def forward(self, x, mask):
x, mask = self.proj(x, mask)
return x, mask
#----------------------------------------------------------------------------
@persistence.persistent_class
class EncFromRGB(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
activation=activation,
)
self.conv1 = Conv2dLayer(in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
)
def forward(self, x):
x = self.conv0(x)
x = self.conv1(x)
return x
@persistence.persistent_class
class ConvBlockDown(nn.Module):
def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log
super().__init__()
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
down=2,
)
self.conv1 = Conv2dLayer(in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
activation=activation,
)
def forward(self, x):
x = self.conv0(x)
x = self.conv1(x)
return x
def token2feature(x, x_size):
B, N, C = x.shape
h, w = x_size
x = x.permute(0, 2, 1).reshape(B, C, h, w)
return x
def feature2token(x):
B, C, H, W = x.shape
x = x.view(B, C, -1).transpose(1, 2)
return x
@persistence.persistent_class
class Encoder(nn.Module):
def __init__(self, res_log2, img_channels, activation, patch_size=5, channels=16, drop_path_rate=0.1):
super().__init__()
self.resolution = []
for idx, i in enumerate(range(res_log2, 3, -1)): # from input size to 16x16
res = 2 ** i
self.resolution.append(res)
if i == res_log2:
block = EncFromRGB(img_channels * 2 + 1, nf(i), activation)
else:
block = ConvBlockDown(nf(i+1), nf(i), activation)
setattr(self, 'EncConv_Block_%dx%d' % (res, res), block)
def forward(self, x):
out = {}
for res in self.resolution:
res_log2 = int(np.log2(res))
x = getattr(self, 'EncConv_Block_%dx%d' % (res, res))(x)
out[res_log2] = x
return out
@persistence.persistent_class
class ToStyle(nn.Module):
def __init__(self, in_channels, out_channels, activation, drop_rate):
super().__init__()
self.conv = nn.Sequential(
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, down=2),
)
self.pool = nn.AdaptiveAvgPool2d(1)
self.fc = FullyConnectedLayer(in_features=in_channels,
out_features=out_channels,
activation=activation)
# self.dropout = nn.Dropout(drop_rate)
def forward(self, x):
x = self.conv(x)
x = self.pool(x)
x = self.fc(x.flatten(start_dim=1))
# x = self.dropout(x)
return x
@persistence.persistent_class
class DecBlockFirstV2(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.res = res
self.conv0 = Conv2dLayer(in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
activation=activation,
)
self.conv1 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, ws, gs, E_features, noise_mode='random'):
# x = self.fc(x).view(x.shape[0], -1, 4, 4)
x = self.conv0(x)
x = x + E_features[self.res]
style = get_style_code(ws[:, 0], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, 1], gs)
img = self.toRGB(x, style, skip=None)
return x, img
#----------------------------------------------------------------------------
@persistence.persistent_class
class DecBlock(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): # res = 4, ..., resolution_log2
super().__init__()
self.res = res
self.conv0 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
up=2,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.conv1 = StyleConv(in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, img, ws, gs, E_features, noise_mode='random'):
style = get_style_code(ws[:, self.res * 2 - 9], gs)
x = self.conv0(x, style, noise_mode=noise_mode)
x = x + E_features[self.res]
style = get_style_code(ws[:, self.res * 2 - 8], gs)
x = self.conv1(x, style, noise_mode=noise_mode)
style = get_style_code(ws[:, self.res * 2 - 7], gs)
img = self.toRGB(x, style, skip=img)
return x, img
@persistence.persistent_class
class Decoder(nn.Module):
def __init__(self, res_log2, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.Dec_16x16 = DecBlockFirstV2(4, nf(4), nf(4), activation, style_dim, use_noise, demodulate, img_channels)
for res in range(5, res_log2 + 1):
setattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res),
DecBlock(res, nf(res - 1), nf(res), activation, style_dim, use_noise, demodulate, img_channels))
self.res_log2 = res_log2
def forward(self, x, ws, gs, E_features, noise_mode='random'):
x, img = self.Dec_16x16(x, ws, gs, E_features, noise_mode=noise_mode)
for res in range(5, self.res_log2 + 1):
block = getattr(self, 'Dec_%dx%d' % (2 ** res, 2 ** res))
x, img = block(x, img, ws, gs, E_features, noise_mode=noise_mode)
return img
@persistence.persistent_class
class DecStyleBlock(nn.Module):
def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels):
super().__init__()
self.res = res
self.conv0 = StyleConv(in_channels=in_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
up=2,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.conv1 = StyleConv(in_channels=out_channels,
out_channels=out_channels,
style_dim=style_dim,
resolution=2**res,
kernel_size=3,
use_noise=use_noise,
activation=activation,
demodulate=demodulate,
)
self.toRGB = ToRGB(in_channels=out_channels,
out_channels=img_channels,
style_dim=style_dim,
kernel_size=1,
demodulate=False,
)
def forward(self, x, img, style, skip, noise_mode='random'):
x = self.conv0(x, style, noise_mode=noise_mode)
x = x + skip
x = self.conv1(x, style, noise_mode=noise_mode)
img = self.toRGB(x, style, skip=img)
return x, img
@persistence.persistent_class
class FirstStage(nn.Module):
def __init__(self, img_channels, img_resolution=256, dim=180, w_dim=512, use_noise=False, demodulate=True, activation='lrelu'):
super().__init__()
res = 64
self.conv_first = Conv2dLayerPartial(in_channels=img_channels+1, out_channels=dim, kernel_size=3, activation=activation)
self.enc_conv = nn.ModuleList()
down_time = int(np.log2(img_resolution // res))
for i in range(down_time): # from input size to 64
self.enc_conv.append(
Conv2dLayerPartial(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation)
)
# from 64 -> 16 -> 64
depths = [2, 3, 4, 3, 2]
ratios = [1, 1/2, 1/2, 2, 2]
num_heads = 6
window_sizes = [8, 16, 16, 16, 8]
drop_path_rate = 0.1
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
self.tran = nn.ModuleList()
for i, depth in enumerate(depths):
res = int(res * ratios[i])
if ratios[i] < 1:
merge = PatchMerging(dim, dim, down=int(1/ratios[i]))
elif ratios[i] > 1:
merge = PatchUpsampling(dim, dim, up=ratios[i])
else:
merge = None
self.tran.append(
BasicLayer(dim=dim, input_resolution=[res, res], depth=depth, num_heads=num_heads,
window_size=window_sizes[i], drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
downsample=merge)
)
# global style
down_conv = []
for i in range(int(np.log2(16))):
down_conv.append(Conv2dLayer(in_channels=dim, out_channels=dim, kernel_size=3, down=2, activation=activation))
down_conv.append(nn.AdaptiveAvgPool2d((1, 1)))
self.down_conv = nn.Sequential(*down_conv)
self.to_style = FullyConnectedLayer(in_features=dim, out_features=dim*2, activation=activation)
self.ws_style = FullyConnectedLayer(in_features=w_dim, out_features=dim, activation=activation)
self.to_square = FullyConnectedLayer(in_features=dim, out_features=16*16, activation=activation)
style_dim = dim * 3
self.dec_conv = nn.ModuleList()
for i in range(down_time): # from 64 to input size
res = res * 2
self.dec_conv.append(DecStyleBlock(res, dim, dim, activation, style_dim, use_noise, demodulate, img_channels))
def forward(self, images_in, masks_in, ws, noise_mode='random'):
x = torch.cat([masks_in - 0.5, images_in * masks_in], dim=1)
skips = []
x, mask = self.conv_first(x, masks_in) # input size
skips.append(x)
for i, block in enumerate(self.enc_conv): # input size to 64
x, mask = block(x, mask)
if i != len(self.enc_conv) - 1:
skips.append(x)
x_size = x.size()[-2:]
x = feature2token(x)
mask = feature2token(mask)
mid = len(self.tran) // 2
for i, block in enumerate(self.tran): # 64 to 16
if i < mid:
x, x_size, mask = block(x, x_size, mask)
skips.append(x)
elif i > mid:
x, x_size, mask = block(x, x_size, None)
x = x + skips[mid - i]
else:
x, x_size, mask = block(x, x_size, None)
mul_map = torch.ones_like(x) * 0.5
mul_map = F.dropout(mul_map, training=True)
ws = self.ws_style(ws[:, -1])
add_n = self.to_square(ws).unsqueeze(1)
add_n = F.interpolate(add_n, size=x.size(1), mode='linear', align_corners=False).squeeze(1).unsqueeze(-1)
x = x * mul_map + add_n * (1 - mul_map)
gs = self.to_style(self.down_conv(token2feature(x, x_size)).flatten(start_dim=1))
style = torch.cat([gs, ws], dim=1)
x = token2feature(x, x_size).contiguous()
img = None
for i, block in enumerate(self.dec_conv):
x, img = block(x, img, style, skips[len(self.dec_conv)-i-1], noise_mode=noise_mode)
# ensemble
img = img * (1 - masks_in) + images_in * masks_in
return img
@persistence.persistent_class
class SynthesisNet(nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels = 3, # Number of color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_decay = 1.0,
channel_max = 512, # Maximum number of channels in any layer.
activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc.
drop_rate = 0.5,
use_noise = True,
demodulate = True,
):
super().__init__()
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.num_layers = resolution_log2 * 2 - 3 * 2
self.img_resolution = img_resolution
self.resolution_log2 = resolution_log2
# first stage
self.first_stage = FirstStage(img_channels, img_resolution=img_resolution, w_dim=w_dim, use_noise=False, demodulate=demodulate)
# second stage
self.enc = Encoder(resolution_log2, img_channels, activation, patch_size=5, channels=16)
self.to_square = FullyConnectedLayer(in_features=w_dim, out_features=16*16, activation=activation)
self.to_style = ToStyle(in_channels=nf(4), out_channels=nf(2) * 2, activation=activation, drop_rate=drop_rate)
style_dim = w_dim + nf(2) * 2
self.dec = Decoder(resolution_log2, activation, style_dim, use_noise, demodulate, img_channels)
def forward(self, images_in, masks_in, ws, noise_mode='random', return_stg1=False):
out_stg1 = self.first_stage(images_in, masks_in, ws, noise_mode=noise_mode)
# encoder
x = images_in * masks_in + out_stg1 * (1 - masks_in)
x = torch.cat([masks_in - 0.5, x, images_in * masks_in], dim=1)
E_features = self.enc(x)
fea_16 = E_features[4]
mul_map = torch.ones_like(fea_16) * 0.5
mul_map = F.dropout(mul_map, training=True)
add_n = self.to_square(ws[:, 0]).view(-1, 16, 16).unsqueeze(1)
add_n = F.interpolate(add_n, size=fea_16.size()[-2:], mode='bilinear', align_corners=False)
fea_16 = fea_16 * mul_map + add_n * (1 - mul_map)
E_features[4] = fea_16
# style
gs = self.to_style(fea_16)
# decoder
img = self.dec(fea_16, ws, gs, E_features, noise_mode=noise_mode)
# ensemble
img = img * (1 - masks_in) + images_in * masks_in
if not return_stg1:
return img
else:
return img, out_stg1
@persistence.persistent_class
class Generator(nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality, 0 = no latent.
c_dim, # Conditioning label (C) dimensionality, 0 = no label.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # resolution of generated image
img_channels, # Number of input color channels.
synthesis_kwargs = {}, # Arguments for SynthesisNetwork.
mapping_kwargs = {}, # Arguments for MappingNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.synthesis = SynthesisNet(w_dim=w_dim,
img_resolution=img_resolution,
img_channels=img_channels,
**synthesis_kwargs)
self.mapping = MappingNet(z_dim=z_dim,
c_dim=c_dim,
w_dim=w_dim,
num_ws=self.synthesis.num_layers,
**mapping_kwargs)
def forward(self, images_in, masks_in, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False,
noise_mode='random', return_stg1=False):
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff,
skip_w_avg_update=skip_w_avg_update)
if not return_stg1:
img = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode)
return img
else:
img, out_stg1 = self.synthesis(images_in, masks_in, ws, noise_mode=noise_mode, return_stg1=True)
return img, out_stg1
@persistence.persistent_class
class Discriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
channel_decay = 1,
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
activation = 'lrelu',
mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch.
mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
resolution_log2 = int(np.log2(img_resolution))
assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4
self.resolution_log2 = resolution_log2
if cmap_dim == None:
cmap_dim = nf(2)
if c_dim == 0:
cmap_dim = 0
self.cmap_dim = cmap_dim
if c_dim > 0:
self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None)
Dis = [DisFromRGB(img_channels+1, nf(resolution_log2), activation)]
for res in range(resolution_log2, 2, -1):
Dis.append(DisBlock(nf(res), nf(res-1), activation))
if mbstd_num_channels > 0:
Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels))
Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation))
self.Dis = nn.Sequential(*Dis)
self.fc0 = FullyConnectedLayer(nf(2)*4**2, nf(2), activation=activation)
self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim)
# for 64x64
Dis_stg1 = [DisFromRGB(img_channels+1, nf(resolution_log2) // 2, activation)]
for res in range(resolution_log2, 2, -1):
Dis_stg1.append(DisBlock(nf(res) // 2, nf(res - 1) // 2, activation))
if mbstd_num_channels > 0:
Dis_stg1.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels))
Dis_stg1.append(Conv2dLayer(nf(2) // 2 + mbstd_num_channels, nf(2) // 2, kernel_size=3, activation=activation))
self.Dis_stg1 = nn.Sequential(*Dis_stg1)
self.fc0_stg1 = FullyConnectedLayer(nf(2) // 2 * 4 ** 2, nf(2) // 2, activation=activation)
self.fc1_stg1 = FullyConnectedLayer(nf(2) // 2, 1 if cmap_dim == 0 else cmap_dim)
def forward(self, images_in, masks_in, images_stg1, c):
x = self.Dis(torch.cat([masks_in - 0.5, images_in], dim=1))
x = self.fc1(self.fc0(x.flatten(start_dim=1)))
x_stg1 = self.Dis_stg1(torch.cat([masks_in - 0.5, images_stg1], dim=1))
x_stg1 = self.fc1_stg1(self.fc0_stg1(x_stg1.flatten(start_dim=1)))
if self.c_dim > 0:
cmap = self.mapping(None, c)
if self.cmap_dim > 0:
x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
x_stg1 = (x_stg1 * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
return x, x_stg1
if __name__ == '__main__':
device = torch.device('cuda:0')
batch = 1
res = 512
G = Generator(z_dim=512, c_dim=0, w_dim=512, img_resolution=512, img_channels=3).to(device)
D = Discriminator(c_dim=0, img_resolution=res, img_channels=3).to(device)
img = torch.randn(batch, 3, res, res).to(device)
mask = torch.randn(batch, 1, res, res).to(device)
z = torch.randn(batch, 512).to(device)
G.eval()
# def count(block):
# return sum(p.numel() for p in block.parameters()) / 10 ** 6
# print('Generator', count(G))
# print('discriminator', count(D))
with torch.no_grad():
img, img_stg1 = G(img, mask, z, None, return_stg1=True)
print('output of G:', img.shape, img_stg1.shape)
score, score_stg1 = D(img, mask, img_stg1, None)
print('output of D:', score.shape, score_stg1.shape)
|