Spaces:
Runtime error
Runtime error
File size: 24,091 Bytes
b6dd358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import copy
import json
import pickle
import psutil
import PIL.Image
import numpy as np
import torch
import dnnlib
from torch_utils import misc
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import grid_sample_gradfix
import legacy
from metrics import metric_main
#----------------------------------------------------------------------------
def setup_snapshot_image_grid(training_set, random_seed=0):
rnd = np.random.RandomState(random_seed)
gw = np.clip(7680 // training_set.image_shape[2], 7, 32)
gh = np.clip(4320 // training_set.image_shape[1], 4, 32)
# No labels => show random subset of training samples.
if not training_set.has_labels:
all_indices = list(range(len(training_set)))
rnd.shuffle(all_indices)
grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)]
else:
# Group training samples by label.
label_groups = dict() # label => [idx, ...]
for idx in range(len(training_set)):
label = tuple(training_set.get_details(idx).raw_label.flat[::-1])
if label not in label_groups:
label_groups[label] = []
label_groups[label].append(idx)
# Reorder.
label_order = sorted(label_groups.keys())
for label in label_order:
rnd.shuffle(label_groups[label])
# Organize into grid.
grid_indices = []
for y in range(gh):
label = label_order[y % len(label_order)]
indices = label_groups[label]
grid_indices += [indices[x % len(indices)] for x in range(gw)]
label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))]
# Load data.
images, masks, labels = zip(*[training_set[i] for i in grid_indices])
return (gw, gh), np.stack(images), np.stack(masks), np.stack(labels)
#----------------------------------------------------------------------------
def save_image_grid(img, fname, drange, grid_size):
lo, hi = drange
img = np.asarray(img, dtype=np.float32)
img = (img - lo) * (255 / (hi - lo))
img = np.rint(img).clip(0, 255).astype(np.uint8)
gw, gh = grid_size
_N, C, H, W = img.shape
img = img.reshape(gh, gw, C, H, W)
img = img.transpose(0, 3, 1, 4, 2)
img = img.reshape(gh * H, gw * W, C)
assert C in [1, 3]
if C == 1:
PIL.Image.fromarray(img[:, :, 0], 'L').save(fname)
if C == 3:
PIL.Image.fromarray(img, 'RGB').save(fname)
#----------------------------------------------------------------------------
def training_loop(
run_dir = '.', # Output directory.
training_set_kwargs = {}, # Options for training set.
val_set_kwargs = {},
data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader.
G_kwargs = {}, # Options for generator network.
D_kwargs = {}, # Options for discriminator network.
G_opt_kwargs = {}, # Options for generator optimizer.
D_opt_kwargs = {}, # Options for discriminator optimizer.
augment_kwargs = None, # Options for augmentation pipeline. None = disable.
loss_kwargs = {}, # Options for loss function.
metrics = [], # Metrics to evaluate during training.
random_seed = 0, # Global random seed.
num_gpus = 1, # Number of GPUs participating in the training.
rank = 0, # Rank of the current process in [0, num_gpus].
batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus.
batch_gpu = 4, # Number of samples processed at a time by one GPU.
ema_kimg = 10, # Half-life of the exponential moving average (EMA) of generator weights.
ema_rampup = None, # EMA ramp-up coefficient.
G_reg_interval = 4, # How often to perform regularization for G? None = disable lazy regularization.
D_reg_interval = 16, # How often to perform regularization for D? None = disable lazy regularization.
augment_p = 0, # Initial value of augmentation probability.
ada_target = None, # ADA target value. None = fixed p.
ada_interval = 4, # How often to perform ADA adjustment?
ada_kimg = 500, # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit.
total_kimg = 25000, # Total length of the training, measured in thousands of real images.
kimg_per_tick = 4, # Progress snapshot interval.
image_snapshot_ticks = 50, # How often to save image snapshots? None = disable.
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
resume_pkl = None, # Network pickle to resume training from.
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
):
# Initialize.
start_time = time.time()
device = torch.device('cuda', rank)
np.random.seed(random_seed * num_gpus + rank)
torch.manual_seed(random_seed * num_gpus + rank)
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul
torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions
conv2d_gradfix.enabled = True # Improves training speed.
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
# Load training set.
if rank == 0:
print('Loading training set...')
training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset
val_set = dnnlib.util.construct_class_by_name(**val_set_kwargs) # subclass of training.dataset.Dataset
training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed)
training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs))
if rank == 0:
print()
print('Num images: ', len(training_set))
print('Image shape:', training_set.image_shape)
print('Label shape:', training_set.label_shape)
print()
# Construct networks.
if rank == 0:
print('Constructing networks...')
common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels)
G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
G_ema = copy.deepcopy(G).eval()
# Resume from existing pickle.
if (resume_pkl is not None) and (rank == 0):
print(f'Resuming from "{resume_pkl}"')
with dnnlib.util.open_url(resume_pkl) as f:
resume_data = legacy.load_network_pkl(f)
for name, module in [('G', G), ('D', D), ('G_ema', G_ema)]:
misc.copy_params_and_buffers(resume_data[name], module, require_all=False)
# Print network summary tables.
if rank == 0:
z = torch.empty([batch_gpu, G.z_dim], device=device)
c = torch.empty([batch_gpu, G.c_dim], device=device)
# adaptation to inpainting config
# G
img_in = torch.empty([batch_gpu, training_set.num_channels, training_set.resolution, training_set.resolution], device=device)
mask_in = torch.empty([batch_gpu, 1, training_set.resolution, training_set.resolution], device=device)
img = misc.print_module_summary(G, [img_in, mask_in, z, c])
# D
img_stg1 = torch.empty([batch_gpu, 3, training_set.resolution, training_set.resolution], device=device)
misc.print_module_summary(D, [img, mask_in, img_stg1, c])
# Setup augmentation.
if rank == 0:
print('Setting up augmentation...')
augment_pipe = None
ada_stats = None
if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None):
augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module
augment_pipe.p.copy_(torch.as_tensor(augment_p))
if ada_target is not None:
ada_stats = training_stats.Collector(regex='Loss/signs/real')
# Distribute across GPUs.
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
ddp_modules = dict()
for name, module in [('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe)]:
if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0:
module.requires_grad_(True)
module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False)
module.requires_grad_(False)
if name is not None:
ddp_modules[name] = module
# Setup training phases.
if rank == 0:
print('Setting up training phases...')
loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.loss.Loss
phases = []
for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]:
if reg_interval is None:
opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer
phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)]
else: # Lazy regularization.
mb_ratio = reg_interval / (reg_interval + 1)
opt_kwargs = dnnlib.EasyDict(opt_kwargs)
opt_kwargs.lr = opt_kwargs.lr * mb_ratio
opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas]
if 'lrt' in opt_kwargs:
filter_list = ['tran', 'Tran']
base_params = []
tran_params = []
for pname, param in module.named_parameters():
flag = False
for fname in filter_list:
if fname in pname:
flag = True
if flag:
tran_params.append(param)
else:
base_params.append(param)
optim_params = [{'params': base_params}, {'params': tran_params, 'lr': opt_kwargs.lrt * mb_ratio}]
optim_kwargs = dnnlib.EasyDict()
for key, val in opt_kwargs.items():
if 'lrt' != key:
optim_kwargs[key] = val
else:
optim_params = module.parameters()
optim_kwargs = opt_kwargs
opt = dnnlib.util.construct_class_by_name(optim_params, **optim_kwargs)
phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)]
phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)]
for phase in phases:
phase.start_event = None
phase.end_event = None
if rank == 0:
phase.start_event = torch.cuda.Event(enable_timing=True)
phase.end_event = torch.cuda.Event(enable_timing=True)
# Export sample images.
grid_size = None
grid_z = None
grid_c = None
grid_img = None
grid_mask = None
if rank == 0:
print('Exporting sample images...')
grid_size, images, masks, labels = setup_snapshot_image_grid(training_set=val_set)
save_image_grid(images, os.path.join(run_dir, 'reals.png'), drange=[0, 255], grid_size=grid_size)
# adaptation to inpainting config
save_image_grid(masks, os.path.join(run_dir, 'masks.png'), drange=[0, 1], grid_size=grid_size)
# --------------------
grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu)
grid_c = torch.from_numpy(labels).to(device).split(batch_gpu)
# adaptation to inpainting config
grid_img = (torch.from_numpy(images).to(device) / 127.5 - 1).split(batch_gpu) # [-1, 1]
grid_mask = torch.from_numpy(masks).to(device).split(batch_gpu) # {0, 1}
images = torch.cat([G_ema(img_in, mask_in, z, c, noise_mode='const').cpu() \
for img_in, mask_in, z, c in zip(grid_img, grid_mask, grid_z, grid_c)]).numpy()
# --------------------
save_image_grid(images, os.path.join(run_dir, 'fakes_init.png'), drange=[-1,1], grid_size=grid_size)
# Initialize logs.
if rank == 0:
print('Initializing logs...')
stats_collector = training_stats.Collector(regex='.*')
stats_metrics = dict()
stats_jsonl = None
stats_tfevents = None
if rank == 0:
stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt')
try:
import torch.utils.tensorboard as tensorboard
stats_tfevents = tensorboard.SummaryWriter(run_dir)
except ImportError as err:
print('Skipping tfevents export:', err)
# Train.
if rank == 0:
print(f'Training for {total_kimg} kimg...')
print()
cur_nimg = 0
cur_tick = 0
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - start_time
batch_idx = 0
if progress_fn is not None:
progress_fn(0, total_kimg)
while True:
# Fetch training data.
with torch.autograd.profiler.record_function('data_fetch'):
phase_real_img, phase_mask, phase_real_c = next(training_set_iterator)
phase_real_img = (phase_real_img.to(device).to(torch.float32) / 127.5 - 1).split(batch_gpu)
# adaptation to inpainting config
phase_mask = phase_mask.to(device).to(torch.float32).split(batch_gpu)
# --------------------
phase_real_c = phase_real_c.to(device).split(batch_gpu)
all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device)
all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)]
all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)]
all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device)
all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)]
# Execute training phases.
for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c):
if batch_idx % phase.interval != 0:
continue
# Initialize gradient accumulation.
if phase.start_event is not None:
phase.start_event.record(torch.cuda.current_stream(device))
phase.opt.zero_grad(set_to_none=True)
phase.module.requires_grad_(True)
# Accumulate gradients over multiple rounds.
for round_idx, (real_img, mask, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_mask, phase_real_c, phase_gen_z, phase_gen_c)):
sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1)
gain = phase.interval
loss.accumulate_gradients(phase=phase.name, real_img=real_img, mask=mask, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain)
# Update weights.
phase.module.requires_grad_(False)
with torch.autograd.profiler.record_function(phase.name + '_opt'):
for param in phase.module.parameters():
if param.grad is not None:
misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad)
phase.opt.step()
if phase.end_event is not None:
phase.end_event.record(torch.cuda.current_stream(device))
# Update G_ema.
with torch.autograd.profiler.record_function('Gema'):
ema_nimg = ema_kimg * 1000
if ema_rampup is not None:
ema_nimg = min(ema_nimg, cur_nimg * ema_rampup)
ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8))
for p_ema, p in zip(G_ema.parameters(), G.parameters()):
p_ema.copy_(p.lerp(p_ema, ema_beta))
for b_ema, b in zip(G_ema.buffers(), G.buffers()):
b_ema.copy_(b)
# Update state.
cur_nimg += batch_size
batch_idx += 1
# Execute ADA heuristic.
if (ada_stats is not None) and (batch_idx % ada_interval == 0):
ada_stats.update()
adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000)
augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device)))
# Perform maintenance tasks once per tick.
done = (cur_nimg >= total_kimg * 1000)
if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000):
continue
# Print status line, accumulating the same information in stats_collector.
tick_end_time = time.time()
fields = []
fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"]
fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"]
fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"]
fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"]
fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"]
fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"]
fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"]
fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"]
torch.cuda.reset_peak_memory_stats()
fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"]
training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60))
training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60))
if rank == 0:
print(' '.join(fields))
# Check for abort.
if (not done) and (abort_fn is not None) and abort_fn():
done = True
if rank == 0:
print()
print('Aborting...')
# Save image snapshot.
if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0):
images = torch.cat([G_ema(img_in, mask_in, z, c, noise_mode='const').cpu() \
for img_in, mask_in, z, c in zip(grid_img, grid_mask, grid_z, grid_c)]).numpy()
save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.png'), drange=[-1,1], grid_size=grid_size)
# Save network snapshot.
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0):
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs), val_set_kwargs=dict(val_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe)]:
if module is not None:
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=[r'.*\.w_avg', r'.*\.relative_position_index', r'.*\.avg_weight', r'.*\.attn_mask', r'.*\.resample_filter'])
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
if rank == 0:
with open(snapshot_pkl, 'wb') as f:
pickle.dump(snapshot_data, f)
# Evaluate metrics.
if (snapshot_data is not None) and (len(metrics) > 0):
if rank == 0:
print('Evaluating metrics...')
for metric in metrics:
result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'],
dataset_kwargs=val_set_kwargs, num_gpus=num_gpus, rank=rank, device=device)
if rank == 0:
metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl)
stats_metrics.update(result_dict.results)
del snapshot_data # conserve memory
# Collect statistics.
for phase in phases:
value = []
if (phase.start_event is not None) and (phase.end_event is not None):
phase.end_event.synchronize()
value = phase.start_event.elapsed_time(phase.end_event)
training_stats.report0('Timing/' + phase.name, value)
stats_collector.update()
stats_dict = stats_collector.as_dict()
# Update logs.
timestamp = time.time()
if stats_jsonl is not None:
fields = dict(stats_dict, timestamp=timestamp)
stats_jsonl.write(json.dumps(fields) + '\n')
stats_jsonl.flush()
if stats_tfevents is not None:
global_step = int(cur_nimg / 1e3)
walltime = timestamp - start_time
for name, value in stats_dict.items():
stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime)
for name, value in stats_metrics.items():
stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime)
stats_tfevents.flush()
if progress_fn is not None:
progress_fn(cur_nimg // 1000, total_kimg)
# Update state.
cur_tick += 1
tick_start_nimg = cur_nimg
tick_start_time = time.time()
maintenance_time = tick_start_time - tick_end_time
if done:
break
# Done.
if rank == 0:
print()
print('Exiting...')
#----------------------------------------------------------------------------
|