File size: 14,466 Bytes
3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 e8a76b4 3e2d289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import os
# Download and build ggergavos/whisper.cpp Kudos to this man for wonderful whisper implementation!
# This means speed!
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
# Download models, add finetuned languages later once whisper finetuning event is ready
# Models are downloaded on the fly so we can get quite many models :)
os.system('bash ./whisper.cpp/models/download-ggml-model.sh small')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh medium')
os.system('bash ./whisper.cpp/models/download-ggml-model.sh base.en')
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-base.en.bin -f whisper.cpp/samples/jfk.wav')
#print("SEURAAVAKSI SMALL TESTI")
#os.system('./whisper.cpp/main -m whisper.cpp/models/ggml-small.bin -f whisper.cpp/samples/jfk.wav')
#print("MOI")
import gradio as gr
from pathlib import Path
import pysrt
import pandas as pd
import re
import time
import os
import json
from pytube import YouTube
from transformers import MarianMTModel, MarianTokenizer
import psutil
num_cores = psutil.cpu_count()
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
headers = {'Authorization': os.environ['DeepL_API_KEY']}
whisper_models = ["base", "small", "medium", "base.en"]
source_languages = {
"Arabic": "ar",
"Asturian ":"st",
"Belarusian":"be",
"Bulgarian":"bg",
"Czech":"cs",
"Danish":"da",
"German":"de",
"Greeek":"el",
"English":"en",
"Estonian":"et",
"Finnish":"fi",
"Swedish": "sv",
"Spanish":"es",
"Let the model analyze": "Let the model analyze"
}
DeepL_language_codes_for_translation = {
"Bulgarian": "BG",
"Czech": "CS",
"Danish": "DA",
"German": "DE",
"Greek": "EL",
"English": "EN",
"Spanish": "ES",
"Estonian": "ET",
"Finnish": "FI",
"French": "FR",
"Hungarian": "HU",
"Indonesian": "ID",
"Italian": "IT",
"Japanese": "JA",
"Lithuanian": "LT",
"Latvian": "LV",
"Dutch": "NL",
"Polish": "PL",
"Portuguese": "PT",
"Romanian": "RO",
"Russian": "RU",
"Slovak": "SK",
"Slovenian": "SL",
"Swedish": "SV",
"Turkish": "TR",
"Ukrainian": "UK",
"Chinese": "ZH"
}
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
source_language_list = [key[0] for key in source_languages.items()]
source_language_list_2 = [key[0] for key in DeepL_language_codes_for_translation.items()]
translation_models_list = [key[0] for key in translation_models.items()]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE IS: ")
print(device)
videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print("LADATATTU POLKUUN")
print(abs_video_path)
return abs_video_path
def speech_to_text(video_file_path, selected_source_lang, whisper_model):
"""
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
# Currently supports only English audio
This space allows you to:
1. Download youtube video with a given url
2. Watch it in the first video component
3. Run automatic speech recognition on the video using Whisper
4. Translate the recognized transcriptions to Finnish, Swedish, Danish
5. Burn the translations to the original video and watch the video in the 2nd video component
Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper
"""
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
_,file_ending = os.path.splitext(f'{video_file_path}')
print(f'file enging is {file_ending}')
print("starting conversion to wav")
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{video_file_path.replace(file_ending, ".wav")}"')
print("conversion to wav ready")
print("starting whisper c++")
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
os.system(f'rm -f {srt_path}')
if selected_source_lang == "Let the model analyze":
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
else:
os.system(f'./whisper.cpp/main "{video_file_path.replace(file_ending, ".wav")}" -t 4 -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt')
print("starting whisper done with whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
df = pd.DataFrame(columns = ['start','end','text'])
srt_path = str(video_file_path.replace(file_ending, ".wav")) + ".srt"
subs = pysrt.open(srt_path)
objects = []
for sub in subs:
start_hours = str(str(sub.start.hours) + "00")[0:2] if len(str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2]
end_hours = str(str(sub.end.hours) + "00")[0:2] if len(str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2]
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len(str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2]
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len(str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2]
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len(str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2]
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len(str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2]
start_millis = str(str(sub.start.milliseconds) + "000")[0:3]
end_millis = str(str(sub.end.milliseconds) + "000")[0:3]
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}'])
for object in objects:
srt_to_df = {
'start': [object[1]],
'end': [object[2]],
'text': [object[0]]
}
df = pd.concat([df, pd.DataFrame(srt_to_df)])
return df
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
def translate_transcriptions(df, selected_translation_lang_2, selected_source_lang_2):
if selected_translation_lang_2 is None:
selected_translation_lang_2 = 'English'
df.reset_index(inplace=True)
print("start_translation")
translations = []
if selected_translation_lang_2 != selected_source_lang_2:
text_combined = ""
for i, sentence in enumerate(init__df['text']):
if i == 0:
text_combined = sentence
else:
text_combined = text_combined + '\n' + sentence
data = {'text': text_combined,
'tag_spitting': 'xml',
'target_lang': DeepL_language_codes.get(selected_source_lang_2)
}
response = requests.post('https://api-free.deepl.com/v2/translate', headers=headers, data=data)
# Print the response from the server
translated_sentences = json.loads(response.text)
translated_sentences['translations'][0]['text'].split('\n')
df['translation'] = translated_sentences
else:
df['translation'] = df['text']
print("translations done")
return (df)
def create_srt_and_burn(df, video_in):
print("Starting creation of video wit srt")
print("video in path is:")
print(video_in)
with open('testi.srt','w', encoding="utf-8") as file:
for i in range(len(df)):
file.write(str(i+1))
file.write('\n')
start = df.iloc[i]['start']
file.write(f"{start}")
stop = df.iloc[i]['end']
file.write(' --> ')
file.write(f"{stop}")
file.write('\n')
file.writelines(df.iloc[i]['translation'])
if int(i) != len(df)-1:
file.write('\n\n')
print("SRT DONE")
try:
file1 = open('./testi.srt', 'r', encoding="utf-8")
Lines = file1.readlines()
count = 0
# Strips the newline character
for line in Lines:
count += 1
print("{}".format(line))
print(type(video_in))
print(video_in)
video_out = video_in.replace('.mp4', '_out.mp4')
print("video_out_path")
print(video_out)
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
print(command)
os.system(command)
return video_out
except Exception as e:
print(e)
return video_out
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)
df_init = pd.DataFrame(columns=['start','end','text'])
df_init_2 = pd.DataFrame(columns=['start','end','text','translation'])
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="Let the model analyze", label="Spoken language in video", interactive=True)
selected_source_lang_2 = gr.Dropdown(choices=source_language_list_2, type="value", value="English", label="Spoken language in video", interactive=True)
selected_translation_lang_2 = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="In which language you want the transcriptions?", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
transcription_and_translation_df = gr.DataFrame(value=df_init_2,label="Transcription and translation dataframe", max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
demo = gr.Blocks(css='''
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
''')
demo.encrypt = False
with demo:
transcription_var = gr.Variable()
with gr.Row():
with gr.Column():
gr.Markdown('''
### This space allows you to:
##### 1. Download youtube video with a given URL
##### 2. Watch it in the first video component
##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language)
##### 4. Translate the recognized transcriptions to Finnish, Swedish, Danish
##### 5. Burn the translations to the original video and watch the video in the 2nd video component
''')
with gr.Column():
gr.Markdown('''
### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests)
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
''')
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription and translation process.
##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing and might fail for longer videos)
''')
selected_source_lang.render()
selected_whisper_model.render()
transcribe_btn = gr.Button("Step 2. Transcribe audio")
transcribe_btn.click(speech_to_text, [video_in, selected_source_lang, selected_whisper_model], transcription_df)
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
with gr.Row():
with gr.Column():
transcription_df.render()
with gr.Row():
with gr.Column():
gr.Markdown('''
##### Here you will get translated transcriptions.
##### Please remember to select Spoken Language and wanted translation language
##### ''')
selected_source_lang_2.render()
selected_translation_lang_2.render()
translate_transcriptions_button = gr.Button("Step 3. Translate transcription")
translate_transcriptions_button.click(translate_transcriptions, [transcription_df, selected_translation_lang_2, selected_source_lang_2], transcription_and_translation_df)
transcription_and_translation_df.render()
with gr.Row():
with gr.Column():
gr.Markdown('''
##### Now press the Step 4. Button to create output video with translated transcriptions
##### ''')
translate_and_make_srt_btn = gr.Button("Step 4. Create and burn srt to video")
print(video_in)
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_and_translation_df,video_in], [
video_out])
video_out.render()
demo.launch() |