Spaces:
Runtime error
Runtime error
File size: 5,570 Bytes
ae40f24 6ac4f37 ae40f24 3c3a470 ae40f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from transformers import pipeline
from transformers import TrainingArguments, Trainer, AutoModelForSeq2SeqLM
# In[2]:
import pandas as pd
import pickle
import streamlit as st
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import nltk
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import re
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import wordnet
nltk.download('punkt')
nltk.download('wordnet')
# In[47]:
data3 = pd.read_csv('final2.csv')
# In[5]:
data3.info()
# In[6]:
data3.head()
# In[9]:
data3['topic'] = data3.topic.astype("string")
data3['discription'] = data3.discription.astype("string")
data3['keyword'] = data3.keyword.astype("string")
data3['level'] = data3.level.astype("string")
data3.info()
# # Data Cleaning Process
# In[10]:
data3['tag'] = data3['discription'] + " " + data3['keyword'] +" " + data3['level']
# In[11]:
def remove_symbols(text):
# Create a regular expression pattern to match unwanted symbols
pattern = r'[^\w\s]' # Matches characters that are not alphanumeric or whitespace
# Substitute matched symbols with an empty string
return re.sub(pattern, '', text.lower())
# In[12]:
data3['tag'] = data3['tag'].fillna('')
data3['tag'] = data3['tag'].apply(remove_symbols)
data3['level'] = data3['level'].apply(lambda x: x.replace(" ",""))
data3['keyword'] = data3['keyword'].fillna('')
data3.head()
# # Convert tag columns into vector
# In[14]:
cv = CountVectorizer( max_features = 5000, stop_words = 'english')
vector = cv.fit_transform(data3['tag']).toarray()
# In[18]:
ps = PorterStemmer()
# In[30]:
def preprocess_query(query):
# Lowercase the query
cleaned_query = query.lower()
# Remove punctuation (adjust as needed)
import string
punctuation = string.punctuation
cleaned_query = ''.join([char for char in cleaned_query if char not in punctuation])
# Remove stop words (optional, replace with your stop word list)
stop_words = ["the", "a", "is", "in", "of"]
cleaned_query = ' '.join([word for word in cleaned_query.split() if word not in stop_words])
# Stemming
ps = PorterStemmer()
cleaned_query = ' '.join([ps.stem(word) for word in cleaned_query.split()])
# Lemmatization
wnl = WordNetLemmatizer()
cleaned_query = ' '.join([wnl.lemmatize(word) for word in cleaned_query.split()])
return cleaned_query
# In[31]:
# # Find Similarity score for finding most related topic from dataset
# In[24]:
similar = cosine_similarity(vector)
# In[27]:
# sorted(list(enumerate(similar[1])),reverse = True, key = lambda x: x[1])[0:5]
# In[29]:
summarizer = pipeline("summarization", model="facebook/bart-base")
text_generator = pipeline("text-generation", model="gpt2")
# In[34]:
documents = []
for index, row in data3.iterrows():
topic_description = preprocess_query(row["topic"])
keywords = preprocess_query(row["keyword"])
combined_text = f"{topic_description} {keywords}" # Combine for TF-IDF
documents.append(combined_text)
# In[35]:
# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()
# Fit the vectorizer on the documents
document_vectors = vectorizer.fit_transform(documents)
def recommend_from_dataset(query):
cleaned_query = preprocess_query(query)
query_vector = vectorizer.transform([cleaned_query])
# Calculate cosine similarity between query and documents
cosine_similarities = cosine_similarity(query_vector, document_vectors)
similarity_scores = cosine_similarities.flatten()
# Sort documents based on similarity scores
sorted_results = sorted(zip(similarity_scores, data3.index, range(len(documents))), reverse=True)
# Return top N recommendations with scores, topic names, and links (if available)
top_n_results = sorted_results[:5]
recommendations = []
for result in top_n_results:
score = result[0]
document_id = result[1]
topic_name = data3.loc[document_id, "topic"]
link = data3.loc[document_id, "Links"] if "Links" in data3.columns else "No link available"
if score >= 0.3:
recommendations.append({"topic_name": topic_name, "link": link})
return recommendations
# In[45]:
def summarize_and_generate(user_query, recommendations):
# Summarize the user query
query_summary = summarizer(user_query, max_length=200, truncation=True)[0]["summary_text"]
# Generate creative text related to the query
generated_text = text_generator(f"Exploring the concept of {user_query}", max_length=200, num_return_sequences=3)[0]["generated_text"]
# Extract related links with scores
related_links = []
for recommendation in recommendations:
related_links.append({"topic": recommendation["topic_name"], "link": recommendation["link"]})
return {
"query_summary": query_summary.strip(),
"generated_text": generated_text.strip(),
"related_links": related_links
}
# In[46]:
# user_query = "java "
# recommendations = recommend_from_dataset(user_query)
# # Get the summary, generated text, and related links
# results = summarize_and_generate(user_query, recommendations)
# print(f"Query Summary: {results['query_summary']}")
# print(f"Creative Text: {results['generated_text']}")
# print("Related Links:")
# for link in results["related_links"]:
# print(f"- {link['topic']}: {link['link']}")
# In[ ]:
|