Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,848 Bytes
73c83cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import Tensor, nn
from detectron2.data.detection_utils import convert_image_to_rgb
from detectron2.layers import move_device_like
from detectron2.modeling import Backbone
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.utils.events import get_event_storage
from ..postprocessing import detector_postprocess
def permute_to_N_HWA_K(tensor, K: int):
"""
Transpose/reshape a tensor from (N, (Ai x K), H, W) to (N, (HxWxAi), K)
"""
assert tensor.dim() == 4, tensor.shape
N, _, H, W = tensor.shape
tensor = tensor.view(N, -1, K, H, W)
tensor = tensor.permute(0, 3, 4, 1, 2)
tensor = tensor.reshape(N, -1, K) # Size=(N,HWA,K)
return tensor
class DenseDetector(nn.Module):
"""
Base class for dense detector. We define a dense detector as a fully-convolutional model that
makes per-pixel (i.e. dense) predictions.
"""
def __init__(
self,
backbone: Backbone,
head: nn.Module,
head_in_features: Optional[List[str]] = None,
*,
pixel_mean,
pixel_std,
):
"""
Args:
backbone: backbone module
head: head module
head_in_features: backbone features to use in head. Default to all backbone features.
pixel_mean (Tuple[float]):
Values to be used for image normalization (BGR order).
To train on images of different number of channels, set different mean & std.
Default values are the mean pixel value from ImageNet: [103.53, 116.28, 123.675]
pixel_std (Tuple[float]):
When using pre-trained models in Detectron1 or any MSRA models,
std has been absorbed into its conv1 weights, so the std needs to be set 1.
Otherwise, you can use [57.375, 57.120, 58.395] (ImageNet std)
"""
super().__init__()
self.backbone = backbone
self.head = head
if head_in_features is None:
shapes = self.backbone.output_shape()
self.head_in_features = sorted(shapes.keys(), key=lambda x: shapes[x].stride)
else:
self.head_in_features = head_in_features
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
@property
def device(self):
return self.pixel_mean.device
def _move_to_current_device(self, x):
return move_device_like(x, self.pixel_mean)
def forward(self, batched_inputs: List[Dict[str, Tensor]]):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper` .
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* image: Tensor, image in (C, H, W) format.
* instances: Instances
Other information that's included in the original dicts, such as:
* "height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
In training, dict[str, Tensor]: mapping from a named loss to a tensor storing the
loss. Used during training only. In inference, the standard output format, described
in :doc:`/tutorials/models`.
"""
images = self.preprocess_image(batched_inputs)
features = self.backbone(images.tensor)
features = [features[f] for f in self.head_in_features]
predictions = self.head(features)
if self.training:
assert not torch.jit.is_scripting(), "Not supported"
assert "instances" in batched_inputs[0], "Instance annotations are missing in training!"
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
return self.forward_training(images, features, predictions, gt_instances)
else:
results = self.forward_inference(images, features, predictions)
if torch.jit.is_scripting():
return results
processed_results = []
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
def forward_training(self, images, features, predictions, gt_instances):
raise NotImplementedError()
def preprocess_image(self, batched_inputs: List[Dict[str, Tensor]]):
"""
Normalize, pad and batch the input images.
"""
images = [self._move_to_current_device(x["image"]) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
return images
def _transpose_dense_predictions(
self, predictions: List[List[Tensor]], dims_per_anchor: List[int]
) -> List[List[Tensor]]:
"""
Transpose the dense per-level predictions.
Args:
predictions: a list of outputs, each is a list of per-level
predictions with shape (N, Ai x K, Hi, Wi), where N is the
number of images, Ai is the number of anchors per location on
level i, K is the dimension of predictions per anchor.
dims_per_anchor: the value of K for each predictions. e.g. 4 for
box prediction, #classes for classification prediction.
Returns:
List[List[Tensor]]: each prediction is transposed to (N, Hi x Wi x Ai, K).
"""
assert len(predictions) == len(dims_per_anchor)
res: List[List[Tensor]] = []
for pred, dim_per_anchor in zip(predictions, dims_per_anchor):
pred = [permute_to_N_HWA_K(x, dim_per_anchor) for x in pred]
res.append(pred)
return res
def _ema_update(self, name: str, value: float, initial_value: float, momentum: float = 0.9):
"""
Apply EMA update to `self.name` using `value`.
This is mainly used for loss normalizer. In Detectron1, loss is normalized by number
of foreground samples in the batch. When batch size is 1 per GPU, #foreground has a
large variance and using it lead to lower performance. Therefore we maintain an EMA of
#foreground to stabilize the normalizer.
Args:
name: name of the normalizer
value: the new value to update
initial_value: the initial value to start with
momentum: momentum of EMA
Returns:
float: the updated EMA value
"""
if hasattr(self, name):
old = getattr(self, name)
else:
old = initial_value
new = old * momentum + value * (1 - momentum)
setattr(self, name, new)
return new
def _decode_per_level_predictions(
self,
anchors: Boxes,
pred_scores: Tensor,
pred_deltas: Tensor,
score_thresh: float,
topk_candidates: int,
image_size: Tuple[int, int],
) -> Instances:
"""
Decode boxes and classification predictions of one featuer level, by
the following steps:
1. filter the predictions based on score threshold and top K scores.
2. transform the box regression outputs
3. return the predicted scores, classes and boxes
Args:
anchors: Boxes, anchor for this feature level
pred_scores: HxWxA,K
pred_deltas: HxWxA,4
Returns:
Instances: with field "scores", "pred_boxes", "pred_classes".
"""
# Apply two filtering to make NMS faster.
# 1. Keep boxes with confidence score higher than threshold
keep_idxs = pred_scores > score_thresh
pred_scores = pred_scores[keep_idxs]
topk_idxs = torch.nonzero(keep_idxs) # Kx2
# 2. Keep top k top scoring boxes only
topk_idxs_size = topk_idxs.shape[0]
if isinstance(topk_idxs_size, Tensor):
# It's a tensor in tracing
num_topk = torch.clamp(topk_idxs_size, max=topk_candidates)
else:
num_topk = min(topk_idxs_size, topk_candidates)
pred_scores, idxs = pred_scores.topk(num_topk)
topk_idxs = topk_idxs[idxs]
anchor_idxs, classes_idxs = topk_idxs.unbind(dim=1)
pred_boxes = self.box2box_transform.apply_deltas(
pred_deltas[anchor_idxs], anchors.tensor[anchor_idxs]
)
return Instances(
image_size, pred_boxes=Boxes(pred_boxes), scores=pred_scores, pred_classes=classes_idxs
)
def _decode_multi_level_predictions(
self,
anchors: List[Boxes],
pred_scores: List[Tensor],
pred_deltas: List[Tensor],
score_thresh: float,
topk_candidates: int,
image_size: Tuple[int, int],
) -> Instances:
"""
Run `_decode_per_level_predictions` for all feature levels and concat the results.
"""
predictions = [
self._decode_per_level_predictions(
anchors_i,
box_cls_i,
box_reg_i,
score_thresh,
topk_candidates,
image_size,
)
# Iterate over every feature level
for box_cls_i, box_reg_i, anchors_i in zip(pred_scores, pred_deltas, anchors)
]
return predictions[0].cat(predictions) # 'Instances.cat' is not scriptale but this is
def visualize_training(self, batched_inputs, results):
"""
A function used to visualize ground truth images and final network predictions.
It shows ground truth bounding boxes on the original image and up to 20
predicted object bounding boxes on the original image.
Args:
batched_inputs (list): a list that contains input to the model.
results (List[Instances]): a list of #images elements returned by forward_inference().
"""
from detectron2.utils.visualizer import Visualizer
assert len(batched_inputs) == len(
results
), "Cannot visualize inputs and results of different sizes"
storage = get_event_storage()
max_boxes = 20
image_index = 0 # only visualize a single image
img = batched_inputs[image_index]["image"]
img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format)
v_gt = Visualizer(img, None)
v_gt = v_gt.overlay_instances(boxes=batched_inputs[image_index]["instances"].gt_boxes)
anno_img = v_gt.get_image()
processed_results = detector_postprocess(results[image_index], img.shape[0], img.shape[1])
predicted_boxes = processed_results.pred_boxes.tensor.detach().cpu().numpy()
v_pred = Visualizer(img, None)
v_pred = v_pred.overlay_instances(boxes=predicted_boxes[0:max_boxes])
prop_img = v_pred.get_image()
vis_img = np.vstack((anno_img, prop_img))
vis_img = vis_img.transpose(2, 0, 1)
vis_name = f"Top: GT bounding boxes; Bottom: {max_boxes} Highest Scoring Results"
storage.put_image(vis_name, vis_img)
|