File size: 4,031 Bytes
73c83cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26af83
 
73c83cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

<div align="center">
<h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>

<a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
<a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
<a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>


</div>

This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).

Star ⭐ us if you like it!

---


![teaser2](assets/teaser2.png)&nbsp;
![teaser](assets/teaser.png)&nbsp;


## TODO LIST


- [x] demo model
- [x] inference code
- [ ] training code



## Requirements

```
git clone https://github.com/yisol/IDM-VTON.git
cd IDM-VTON

conda env create -f environment.yaml
conda activate idm
```

## Data preparation

### VITON-HD
You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).

After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.

Structure of the Dataset directory should be as follows.

```

train
|-- ...

test
|-- image
|-- image-densepose
|-- agnostic-mask
|-- cloth
|-- vitonhd_test_tagged.json

```

### DressCode
You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).

We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).

We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.

After download the DressCode dataset, place image-densepose directories and caption text files as follows.

```
DressCode
|-- dresses
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...
|-- lower_body
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...
|-- upper_body
    |-- images
    |-- image-densepose
    |-- dc_caption.txt
    |-- ...
```


## Inference


### VITON-HD

Inference using python file with arguments,

```
accelerate launch inference.py \
    --width 768 --height 1024 --num_inference_steps 30 \
    --output_dir "result" \
    --unpaired \
    --data_dir "DATA_DIR" \
    --seed 42 \
    --test_batch_size 2 \
    --guidance_scale 2.0
```

or, you can simply run with the script file.

```
sh inference.sh
```

### DressCode

For DressCode dataset, put the category you want to generate images via category argument,
```
accelerate launch inference_dc.py \
    --width 768 --height 1024 --num_inference_steps 30 \
    --output_dir "result" \
    --unpaired \
    --data_dir "DATA_DIR" \
    --seed 42 
    --test_batch_size 2
    --guidance_scale 2.0
    --category "upper_body" 
```

or, you can simply run with the script file.
```
sh inference.sh
```


## Acknowledgements

For the [demo](https://huggingface.co/spaces/yisol/IDM-VTON), GPUs are supported from [ZeroGPU](https://huggingface.co/zero-gpu-explorers), and masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On).

Parts of our code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter).



## Citation
```
@article{choi2024improving,
  title={Improving Diffusion Models for Virtual Try-on},
  author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
  journal={arXiv preprint arXiv:2403.05139},
  year={2024}
}
```

## License
The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).