Spaces:
Running
Running
File size: 4,457 Bytes
3a5fce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import cv2
#Import Neural Network Model
from gan import DataLoader, DeepModel, tensor2im
#OpenCv Transform:
from opencv_transform.mask_to_maskref import create_maskref
from opencv_transform.maskdet_to_maskfin import create_maskfin
from opencv_transform.dress_to_correct import create_correct
from opencv_transform.nude_to_watermark import create_watermark
"""
run.py
This script manage the entire transormation.
Transformation happens in 6 phases:
0: dress -> correct [opencv] dress_to_correct
1: correct -> mask: [GAN] correct_to_mask
2: mask -> maskref [opencv] mask_to_maskref
3: maskref -> maskdet [GAN] maskref_to_maskdet
4: maskdet -> maskfin [opencv] maskdet_to_maskfin
5: maskfin -> nude [GAN] maskfin_to_nude
6: nude -> watermark [opencv] nude_to_watermark
"""
phases = ["dress_to_correct", "correct_to_mask", "mask_to_maskref", "maskref_to_maskdet", "maskdet_to_maskfin", "maskfin_to_nude", "nude_to_watermark"]
class Options():
#Init options with default values
def __init__(self):
# experiment specifics
self.norm = 'batch' #instance normalization or batch normalization
self.use_dropout = False #use dropout for the generator
self.data_type = 32 #Supported data type i.e. 8, 16, 32 bit
# input/output sizes
self.batchSize = 1 #input batch size
self.input_nc = 3 # of input image channels
self.output_nc = 3 # of output image channels
# for setting inputs
self.serial_batches = True #if true, takes images in order to make batches, otherwise takes them randomly
self.nThreads = 1 ## threads for loading data (???)
self.max_dataset_size = 1 #Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.
# for generator
self.netG = 'global' #selects model to use for netG
self.ngf = 64 ## of gen filters in first conv layer
self.n_downsample_global = 4 #number of downsampling layers in netG
self.n_blocks_global = 9 #number of residual blocks in the global generator network
self.n_blocks_local = 0 #number of residual blocks in the local enhancer network
self.n_local_enhancers = 0 #number of local enhancers to use
self.niter_fix_global = 0 #number of epochs that we only train the outmost local enhancer
#Phase specific options
self.checkpoints_dir = ""
self.dataroot = ""
#Changes options accordlying to actual phase
def updateOptions(self, phase):
if phase == "correct_to_mask":
self.checkpoints_dir = "checkpoints/cm.lib"
elif phase == "maskref_to_maskdet":
self.checkpoints_dir = "checkpoints/mm.lib"
elif phase == "maskfin_to_nude":
self.checkpoints_dir = "checkpoints/mn.lib"
# process(cv_img, mode)
# return:
# watermark image
def process(cv_img):
#InMemory cv2 images:
dress = cv_img
correct = None
mask = None
maskref = None
maskfin = None
maskdet = None
nude = None
watermark = None
for index, phase in enumerate(phases):
print("Executing phase: " + phase)
#GAN phases:
if (phase == "correct_to_mask") or (phase == "maskref_to_maskdet") or (phase == "maskfin_to_nude"):
#Load global option
opt = Options()
#Load custom phase options:
opt.updateOptions(phase)
#Load Data
if (phase == "correct_to_mask"):
data_loader = DataLoader(opt, correct)
elif (phase == "maskref_to_maskdet"):
data_loader = DataLoader(opt, maskref)
elif (phase == "maskfin_to_nude"):
data_loader = DataLoader(opt, maskfin)
dataset = data_loader.load_data()
#Create Model
model = DeepModel()
model.initialize(opt)
#Run for every image:
for i, data in enumerate(dataset):
generated = model.inference(data['label'], data['inst'])
im = tensor2im(generated.data[0])
#Save Data
if (phase == "correct_to_mask"):
mask = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif (phase == "maskref_to_maskdet"):
maskdet = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
elif (phase == "maskfin_to_nude"):
nude = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
#Correcting:
elif (phase == 'dress_to_correct'):
correct = create_correct(dress)
#mask_ref phase (opencv)
elif (phase == "mask_to_maskref"):
maskref = create_maskref(mask, correct)
#mask_fin phase (opencv)
elif (phase == "maskdet_to_maskfin"):
maskfin = create_maskfin(maskref, maskdet)
#nude_to_watermark phase (opencv)
elif (phase == "nude_to_watermark"):
watermark = create_watermark(nude)
return watermark |