Spaces:
Sleeping
Sleeping
File size: 8,672 Bytes
e8c3964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
#!/usr/bin/env python
"""
run_experiments.py
==================
High-level driver that wires together:
1. YAML / CLI β `PipelineConfig` + `LoggingConfig`
2. Initialises dual-sink logging (console + rotating file)
3. Builds a `RAGPipeline`
4. Streams a list of questions through the pipeline
5. Logs progress, writes per-query JSONL results, and
(optionally) prints aggregate statistics.
You can keep it minimal β or expand the marked TODO sections to:
* compute metrics immediately
* push results to a tracker (W&B, MLflow, etc.)
* spawn multiple configs in parallel.
"""
from __future__ import annotations
import argparse
import json
import sys
from pathlib import Path
from typing import Any, Dict, Iterable, List, Mapping
import yaml
from evaluation import (
PipelineConfig,
RetrieverConfig,
GeneratorConfig,
CrossEncoderConfig,
StatsConfig,
LoggingConfig,
RAGPipeline,
)
from evaluation.utils.logger import init_logging
from evaluation.stats import (
corr_ci,
wilcoxon_signed_rank,
holm_bonferroni,
)
import matplotlib.pyplot as plt
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Helpers
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _merge_dataclass(dc_cls, default, override: Mapping[str, Any]):
"""Return a new *dc_cls* where fields from *override* overwrite *default*."""
from dataclasses import asdict
merged = asdict(default)
merged.update({k: v for k, v in override.items() if v is not None})
return dc_cls(**merged)
def _load_pipeline_config(yaml_path: Path | None) -> PipelineConfig:
"""Parse YAML into nested dataclasses; fall back to defaults."""
if yaml_path is None:
return PipelineConfig() # all defaults
data = yaml.safe_load(yaml_path.read_text())
retr_cfg = _merge_dataclass(
RetrieverConfig(), RetrieverConfig(), data.get("retriever", {})
)
gen_cfg = _merge_dataclass(
GeneratorConfig(), GeneratorConfig(), data.get("generator", {})
)
rr_cfg = _merge_dataclass(
CrossEncoderConfig(), CrossEncoderConfig(), data.get("reranker", {})
)
stats_cfg = _merge_dataclass(StatsConfig(), StatsConfig(), data.get("stats", {}))
log_cfg = _merge_dataclass(LoggingConfig(), LoggingConfig(), data.get("logging", {}))
return PipelineConfig(
retriever=retr_cfg,
generator=gen_cfg,
reranker=rr_cfg,
stats=stats_cfg,
logging=log_cfg,
)
def _read_jsonl(path: Path) -> List[Dict[str, Any]]:
with path.open() as f:
return [json.loads(line) for line in f]
def _write_jsonl(path: Path, rows: Iterable[Mapping[str, Any]]):
path.parent.mkdir(parents=True, exist_ok=True)
with path.open("w") as f:
for row in rows:
f.write(json.dumps(row) + "\n")
# Stats Helper
def aggregate_metrics(rows: list[dict[str, Any]]) -> dict[str, float]:
"""Return mean of every numeric metric found under row['metrics']."""
import numpy as np
keys = rows[0]["metrics"].keys()
return {k: float(np.mean([r["metrics"][k] for r in rows])) for k in keys}
def correlation_with_gold(rows: list[dict[str, Any]], cfg: StatsConfig):
"""Spearman/Kendall correlation between retrieval scores and correctness flag."""
if "human_correct" not in rows[0]:
return None # nothing to correlate
mrr = [r["metrics"].get("mrr", float("nan")) for r in rows]
gold = [1.0 if r["human_correct"] else 0.0 for r in rows]
r, (lo, hi), p = corr_ci(
mrr, gold, method=cfg.correlation_method, n_boot=cfg.n_boot, ci=cfg.ci
)
return dict(r=r, ci_low=lo, ci_high=hi, p=p)
def wilcoxon_against_baseline(
cur: list[dict[str, Any]],
base: list[dict[str, Any]],
cfg: StatsConfig,
):
"""Paired Wilcoxon + Holm-Bonferroni across all metric keys."""
from evaluation.stats import wilcoxon_signed_rank, holm_bonferroni
assert len(cur) == len(base), "Runs must have same #queries"
metrics = cur[0]["metrics"].keys()
p_raw = {}
for m in metrics:
cur_m = [r["metrics"][m] for r in cur]
base_m = [r["metrics"][m] for r in base]
_, p = wilcoxon_signed_rank(cur_m, base_m, alternative=cfg.wilcoxon_alternative)
p_raw[m] = p
return holm_bonferroni(p_raw)
# Plot helper
def save_scatter(rows, out_dir: Path):
out_dir.mkdir(parents=True, exist_ok=True)
x = [r["metrics"]["mrr"] for r in rows if "mrr" in r["metrics"]]
y = [1.0 if r.get("human_correct") else 0.0 for r in rows]
plt.figure()
plt.scatter(x, y, alpha=0.6)
plt.xlabel("MRR")
plt.ylabel("Correct (1=yes)")
plt.title("MRR vs. Human Correctness")
path = out_dir / "mrr_vs_correct.png"
plt.savefig(path, bbox_inches="tight")
plt.close()
return path
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Main
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main(argv: list[str] | None = None) -> None:
ap = argparse.ArgumentParser(description="Run RAG evaluation experiments.")
ap.add_argument("--config", type=Path, help="YAML config with pipeline settings")
ap.add_argument(
"--queries",
type=Path,
required=True,
help="JSONL file β each line must contain at least {'question': ...}",
)
ap.add_argument(
"--output",
type=Path,
default=Path("outputs/results.jsonl"),
help="Where to write JSONL results",
)
ap.add_argument("--dry-run", action="store_true", help="Do not execute pipeline")
ap.add_argument(
"--baseline",
type=Path,
help="Optional: JSONL with baseline run for significance tests",
)
ap.add_argument(
"--plots",
action="store_true",
help="Save diagnostic plots (PNG) alongside results",
)
args = ap.parse_args(argv)
# 1. Parse configuration
cfg = _load_pipeline_config(args.config)
# 2. Initialise logging (file + stderr)
init_logging(
log_dir=cfg.logging.log_dir,
level=cfg.logging.level,
max_mb=cfg.logging.max_mb,
backups=cfg.logging.backups,
)
import logging
logger = logging.getLogger(__name__)
logger.info("Loaded PipelineConfig:\n%s", cfg)
# 3. Build pipeline (retrieval β (rerank) β generation)
pipeline = RAGPipeline(cfg)
# 4. Load queries
rows = _read_jsonl(args.queries)
logger.info("Loaded %d queries from %s", len(rows), args.queries)
if args.dry_run:
logger.warning("Dry-run flag active β exiting before execution.")
sys.exit(0)
# 5. Execute pipeline
results: List[Dict[str, Any]] = []
for i, row in enumerate(rows, 1):
q = row["question"]
logger.info("[%d/%d] Q: %s", i, len(rows), q)
out = pipeline.run(q)
merged = {**row, **out} # keep any gold labels or metadata
results.append(merged)
# 6. Persist results
_write_jsonl(args.output, results)
logger.info("Wrote %d results to %s", len(results), args.output)
# 7. Aggregate statistics, significance tests, plots
agg = aggregate_metrics(results)
logger.info("Mean metrics: %s", json.dumps(agg, indent=2))
corr = correlation_with_gold(results, cfg.stats)
if corr:
logger.info(
"Correlation MRRβgold %s=%.3f 95%%CI=[%.3f, %.3f] p=%.3g",
cfg.stats.correlation_method,
corr["r"],
corr["ci_low"],
corr["ci_high"],
corr["p"],
)
if args.baseline:
baseline_rows = _read_jsonl(args.baseline)
p_adj = wilcoxon_against_baseline(results, baseline_rows, cfg.stats)
logger.info("Wilcoxon vs baseline (Holm-Bonferroni Ξ±=%s): %s", cfg.stats.alpha, p_adj)
if args.plots:
plot_path = save_scatter(results, args.output.parent)
logger.info("Saved plot β %s", plot_path)
if __name__ == "__main__":
main()
|