Spaces:
Running
Running
File size: 30,640 Bytes
72d1759 710feff 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 7022d7f 72d1759 7022d7f 72d1759 2241eea 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf 72d1759 0c6b4cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 |
import base64
import os
from io import BytesIO
import cv2
import gradio as gr
import numpy as np
import pyrebase
import requests
from openai import OpenAI
from PIL import Image, ImageDraw, ImageFont
from prompts import remove_unwanted_prompt
from ultralytics import YOLO
model = YOLO("yolo11n.pt")
def get_middle_thumbnail(input_image: Image, grid_size=(10, 10), padding=3):
"""
Extract the middle thumbnail from a sprite sheet, handling different aspect ratios
and removing padding.
Args:
input_image: PIL Image
grid_size: Tuple of (columns, rows)
padding: Number of padding pixels on each side (default 3)
Returns:
PIL.Image: The middle thumbnail image with padding removed
"""
sprite_sheet = input_image
# Calculate thumbnail dimensions based on actual sprite sheet size
sprite_width, sprite_height = sprite_sheet.size
thumb_width_with_padding = sprite_width // grid_size[0]
thumb_height_with_padding = sprite_height // grid_size[1]
# Remove padding to get actual image dimensions
thumb_width = thumb_width_with_padding - (2 * padding) # 726 - 6 = 720
thumb_height = thumb_height_with_padding - (2 * padding) # varies based on input
# Calculate the middle position
total_thumbs = grid_size[0] * grid_size[1]
middle_index = total_thumbs // 2
# Calculate row and column of middle thumbnail
middle_row = middle_index // grid_size[0]
middle_col = middle_index % grid_size[0]
# Calculate pixel coordinates for cropping, including padding offset
left = (middle_col * thumb_width_with_padding) + padding
top = (middle_row * thumb_height_with_padding) + padding
right = left + thumb_width # Don't add padding here
bottom = top + thumb_height # Don't add padding here
# Crop and return the middle thumbnail
middle_thumb = sprite_sheet.crop((left, top, right, bottom))
return middle_thumb
def encode_image_to_base64(image: Image.Image, format: str = "JPEG") -> str:
"""
Convert a PIL image to a base64 string.
Args:
image: PIL Image object
format: Image format to use for encoding (default: PNG)
Returns:
Base64 encoded string of the image
"""
buffered = BytesIO()
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def add_top_numbers(
input_image,
num_divisions=20,
margin=90,
font_size=120,
dot_spacing=20,
):
"""
Add numbered divisions across the top and bottom of any image with dotted vertical lines.
Args:
input_image (Image): PIL Image
num_divisions (int): Number of divisions to create
margin (int): Size of margin in pixels for numbers
font_size (int): Font size for numbers
dot_spacing (int): Spacing between dots in pixels
"""
# Load the image
original_image = input_image
# Create new image with extra space for numbers on top and bottom
new_width = original_image.width
new_height = original_image.height + (
2 * margin
) # Add margin to both top and bottom
new_image = Image.new("RGB", (new_width, new_height), "white")
# Paste original image in the middle
new_image.paste(original_image, (0, margin))
# Initialize drawing context
draw = ImageDraw.Draw(new_image)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except OSError:
print("Using default font")
font = ImageFont.load_default(size=font_size)
# Calculate division width
division_width = original_image.width / num_divisions
# Draw division numbers and dotted lines
for i in range(num_divisions):
x = (i * division_width) + (division_width / 2)
# Draw number at top
draw.text((x, margin // 2), str(i + 1), fill="black", font=font, anchor="mm")
# Draw number at bottom
draw.text(
(x, new_height - (margin // 2)),
str(i + 1),
fill="black",
font=font,
anchor="mm",
)
# Draw dotted line from top margin to bottom margin
y_start = margin
y_end = new_height - margin
# Draw dots with specified spacing
current_y = y_start
while current_y < y_end:
draw.circle(
[x - 1, current_y - 1, x + 1, current_y + 1],
fill="black",
width=5,
radius=3,
)
current_y += dot_spacing
return new_image
def crop_and_draw_divisions(
input_image,
left_division,
right_division,
num_divisions=20,
line_color=(255, 0, 0),
line_width=2,
head_margin_percent=0.1,
):
"""
Create both 9:16 and 16:9 crops and draw guide lines.
Args:
input_image (Image): PIL Image
left_division (int): Left-side division number (1-20)
right_division (int): Right-side division number (1-20)
num_divisions (int): Total number of divisions (default=20)
line_color (tuple): RGB color tuple for lines (default: red)
line_width (int): Width of lines in pixels (default: 2)
head_margin_percent (float): Percentage margin above head (default: 0.1)
Returns:
tuple: (cropped_image_16_9, image_with_lines, cropped_image_9_16)
"""
yolo_model = YOLO("yolo11n.pt")
# Calculate division width and boundaries
division_width = input_image.width / num_divisions
left_boundary = (left_division - 1) * division_width
right_boundary = right_division * division_width
# First get the 9:16 crop
cropped_image_9_16 = input_image.crop(
(left_boundary, 0, right_boundary, input_image.height)
)
# Run YOLO on the 9:16 crop to get person bbox
bbox = yolo_model(cropped_image_9_16, classes=[0])[0].boxes.xyxy.cpu().numpy()[0]
x1, y1, x2, y2 = bbox
# Calculate top boundary with head margin
head_margin = (y2 - y1) * head_margin_percent
top_boundary = max(0, y1 - head_margin)
# Calculate 16:9 dimensions based on the width between divisions
crop_width = right_boundary - left_boundary
crop_height_16_9 = int(crop_width * 9 / 16)
# Calculate bottom boundary for 16:9
bottom_boundary = min(input_image.height, top_boundary + crop_height_16_9)
# Create 16:9 crop from original image
cropped_image_16_9 = input_image.crop(
(left_boundary, top_boundary, right_boundary, bottom_boundary)
)
# Draw guide lines for both crops on original image
image_with_lines = input_image.copy()
draw = ImageDraw.Draw(image_with_lines)
# Draw vertical lines (for both crops)
draw.line(
[(left_boundary, 0), (left_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
draw.line(
[(right_boundary, 0), (right_boundary, input_image.height)],
fill=line_color,
width=line_width,
)
# Draw horizontal lines (for 16:9 crop)
draw.line(
[(left_boundary, top_boundary), (right_boundary, top_boundary)],
fill=line_color,
width=line_width,
)
draw.line(
[(left_boundary, bottom_boundary), (right_boundary, bottom_boundary)],
fill=line_color,
width=line_width,
)
return cropped_image_16_9, image_with_lines, cropped_image_9_16
def analyze_image(numbered_input_image: Image, prompt, input_image):
"""
Perform inference on an image using GPT-4V.
Args:
numbered_input_image (Image): PIL Image
prompt (str): The prompt/question about the image
input_image (Image): input image without numbers
Returns:
str: The model's response
"""
client = OpenAI()
base64_image = encode_image_to_base64(numbered_input_image, format="JPEG")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
],
}
]
response = client.chat.completions.create(
model="gpt-4o", messages=messages, max_tokens=300
)
messages.extend(
[
{"role": "assistant", "content": response.choices[0].message.content},
{
"role": "user",
"content": "please return the response in the json with keys left_row and right_row",
},
],
)
response = (
client.chat.completions.create(model="gpt-4o", messages=messages)
.choices[0]
.message.content
)
left_index = response.find("{")
right_index = response.rfind("}")
try:
if left_index != -1 and right_index != -1:
response_json = eval(response[left_index : right_index + 1])
cropped_image_16_9, image_with_lines, cropped_image_9_16 = (
crop_and_draw_divisions(
input_image=input_image,
left_division=response_json["left_row"],
right_division=response_json["right_row"],
)
)
except Exception as e:
print(e)
return input_image, input_image, input_image, 0, 20
return (
cropped_image_16_9,
image_with_lines,
cropped_image_9_16,
response_json["left_row"],
response_json["right_row"],
)
def get_sprite_firebase(cid, rsid, uid):
config = {
"apiKey": f"{os.getenv('FIREBASE_API_KEY')}",
"authDomain": f"{os.getenv('FIREBASE_AUTH_DOMAIN')}",
"databaseURL": f"{os.getenv('FIREBASE_DATABASE_URL')}",
"projectId": f"{os.getenv('FIREBASE_PROJECT_ID')}",
"storageBucket": f"{os.getenv('FIREBASE_STORAGE_BUCKET')}",
"messagingSenderId": f"{os.getenv('FIREBASE_MESSAGING_SENDER_ID')}",
"appId": f"{os.getenv('FIREBASE_APP_ID')}",
"measurementId": f"{os.getenv('FIREBASE_MEASUREMENT_ID')}",
}
firebase = pyrebase.initialize_app(config)
db = firebase.database()
account_id = os.getenv("ROLL_ACCOUNT")
COLLAB_EDIT_LINK = "collab_sprite_link_handler"
path = f"{account_id}/{COLLAB_EDIT_LINK}/{uid}/{cid}/{rsid}"
data = db.child(path).get()
return data.val()
def find_persons_center(image):
"""
Find the center point of all persons in the image.
If multiple persons are detected, merge all bounding boxes and find the center.
Args:
image: CV2/numpy array image
Returns:
int: x-coordinate of the center point of all persons
"""
# Detect persons (class 0 in COCO dataset)
results = model(image, classes=[0])
if not results or len(results[0].boxes) == 0:
# If no persons detected, return center of image
return image.shape[1] // 2
# Get all person boxes
boxes = results[0].boxes.xyxy.cpu().numpy()
# Print the number of persons detected (for debugging)
print(f"Detected {len(boxes)} persons in the image")
if len(boxes) == 1:
# If only one person, return center of their bounding box
x1, _, x2, _ = boxes[0]
center_x = int((x1 + x2) // 2)
print(f"Single person detected at center x: {center_x}")
return center_x
else:
# Multiple persons - create a merged bounding box
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
merged_center_x = int((left_x + right_x) // 2)
print(f"Multiple persons merged bounding box center x: {merged_center_x}")
print(f"Merged bounds: left={left_x}, right={right_x}")
return merged_center_x
def create_layouts(image, left_division, right_division):
"""
Create different layout variations of the image using half, one-third, and two-thirds width.
All layout variations will be centered on detected persons, including 16:9 and 9:16 crops.
Args:
image: PIL Image
left_division: Left division index (1-20)
right_division: Right division index (1-20)
Returns:
tuple: (list of layout variations, cutout_image, cutout_16_9, cutout_9_16)
"""
# Convert PIL Image to cv2 format
if isinstance(image, Image.Image):
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
else:
image_cv = image.copy()
# Get image dimensions
height, width = image_cv.shape[:2]
# Calculate division width and crop boundaries
division_width = width / 20 # Assuming 20 divisions
left_boundary = int((left_division - 1) * division_width)
right_boundary = int(right_division * division_width)
# 1. Create cutout image based on divisions
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
cutout_width = right_boundary - left_boundary
cutout_height = cutout_image.shape[0]
# 2. Run YOLO on cutout to get person bounding box and center
results = model(cutout_image, classes=[0])
# Default center if no detection
cutout_center_x = cutout_image.shape[1] // 2
cutout_center_y = cutout_height // 2
# Default values for bounding box
person_top = 0.0
person_height = float(cutout_height)
if results and len(results[0].boxes) > 0:
# Get person detection
boxes = results[0].boxes.xyxy.cpu().numpy()
if len(boxes) == 1:
# Single person
x1, y1, x2, y2 = boxes[0]
cutout_center_x = int((x1 + x2) // 2)
cutout_center_y = int((y1 + y2) // 2)
person_top = y1
person_height = y2 - y1
else:
# Multiple persons - merge bounding boxes
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
top_y = min(box[1] for box in boxes) # Top of highest person
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
cutout_center_x = int((left_x + right_x) // 2)
cutout_center_y = int((top_y + bottom_y) // 2)
person_top = top_y
person_height = bottom_y - top_y
# 3. Create 16:9 and 9:16 versions with person properly framed
aspect_16_9 = 16 / 9
aspect_9_16 = 9 / 16
# For 16:9 version (with 20% margin above person)
target_height_16_9 = int(cutout_width / aspect_16_9)
if target_height_16_9 <= cutout_height:
# Calculate 20% of person height for top margin
top_margin = int(person_height * 0.2)
# Start 20% above the person's top
y_start = int(max(0, person_top - top_margin))
# If this would make the crop exceed the bottom, adjust y_start
if y_start + target_height_16_9 > cutout_height:
y_start = int(max(0, cutout_height - target_height_16_9))
y_end = int(min(cutout_height, y_start + target_height_16_9))
cutout_16_9 = cutout_image[y_start:y_end, :].copy()
else:
# Handle rare case where we need to adjust width (not expected with normal images)
new_width = int(cutout_height * aspect_16_9)
x_start = max(
0, min(cutout_width - new_width, cutout_center_x - new_width // 2)
)
x_end = min(cutout_width, x_start + new_width)
cutout_16_9 = cutout_image[:, x_start:x_end].copy()
# For 9:16 version (centered on person)
target_width_9_16 = int(cutout_height * aspect_9_16)
if target_width_9_16 <= cutout_width:
# Center horizontally around person
x_start = int(
max(
0,
min(
cutout_width - target_width_9_16,
cutout_center_x - target_width_9_16 // 2,
),
)
)
x_end = int(min(cutout_width, x_start + target_width_9_16))
cutout_9_16 = cutout_image[:, x_start:x_end].copy()
else:
# Handle rare case where we need to adjust height
new_height = int(cutout_width / aspect_9_16)
y_start = int(
max(0, min(cutout_height - new_height, cutout_center_y - new_height // 2))
)
y_end = int(min(cutout_height, y_start + new_height))
cutout_9_16 = cutout_image[y_start:y_end, :].copy()
# 4. Scale the center back to original image coordinates
original_center_x = left_boundary + cutout_center_x
# 5. Create layout variations on the original image centered on persons
# Half width layout
half_width = width // 2
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
half_right_x = half_left_x + half_width
half_width_crop = image_cv[:, half_left_x:half_right_x].copy()
# Third width layout
third_width = width // 3
third_left_x = max(
0, min(width - third_width, original_center_x - third_width // 2)
)
third_right_x = third_left_x + third_width
third_width_crop = image_cv[:, third_left_x:third_right_x].copy()
# Two-thirds width layout
two_thirds_width = (width * 2) // 3
two_thirds_left_x = max(
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
)
two_thirds_right_x = two_thirds_left_x + two_thirds_width
two_thirds_crop = image_cv[:, two_thirds_left_x:two_thirds_right_x].copy()
# Add labels to all crops
font = cv2.FONT_HERSHEY_SIMPLEX
label_settings = {
"fontScale": 1.0,
"fontFace": 1,
"thickness": 2,
}
# Draw label backgrounds for better visibility
def add_label(img, label):
# Draw background for text
text_size = cv2.getTextSize(
label, **{k: v for k, v in label_settings.items() if k != "color"}
)
cv2.rectangle(
img,
(10, 10),
(10 + text_size[0][0] + 10, 10 + text_size[0][1] + 10),
(0, 0, 0),
-1,
) # Black background
# Draw text
cv2.putText(
img,
label,
(15, 15 + text_size[0][1]),
**label_settings,
color=(255, 255, 255),
lineType=cv2.LINE_AA,
)
return img
cutout_image = add_label(cutout_image, "Cutout")
cutout_16_9 = add_label(cutout_16_9, "16:9")
cutout_9_16 = add_label(cutout_9_16, "9:16")
half_width_crop = add_label(half_width_crop, "Half Width")
third_width_crop = add_label(third_width_crop, "Third Width")
two_thirds_crop = add_label(two_thirds_crop, "Two-Thirds Width")
# Convert all output images to PIL format
layout_crops = []
for layout, label in [
(half_width_crop, "Half Width"),
(third_width_crop, "Third Width"),
(two_thirds_crop, "Two-Thirds Width"),
]:
pil_layout = Image.fromarray(cv2.cvtColor(layout, cv2.COLOR_BGR2RGB))
layout_crops.append(pil_layout)
cutout_pil = Image.fromarray(cv2.cvtColor(cutout_image, cv2.COLOR_BGR2RGB))
cutout_16_9_pil = Image.fromarray(cv2.cvtColor(cutout_16_9, cv2.COLOR_BGR2RGB))
cutout_9_16_pil = Image.fromarray(cv2.cvtColor(cutout_9_16, cv2.COLOR_BGR2RGB))
return layout_crops, cutout_pil, cutout_16_9_pil, cutout_9_16_pil
def draw_all_crops_on_original(image, left_division, right_division):
"""
Create a visualization showing all crop regions overlaid on the original image.
Each crop region is outlined with a different color and labeled.
All crops are centered on the person's center point.
Args:
image: PIL Image
left_division: Left division index (1-20)
right_division: Right division index (1-20)
Returns:
PIL Image: Original image with all crop regions visualized
"""
# Convert PIL Image to cv2 format
if isinstance(image, Image.Image):
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
else:
image_cv = image.copy()
# Get a clean copy for drawing
visualization = image_cv.copy()
# Get image dimensions
height, width = image_cv.shape[:2]
# Calculate division width and crop boundaries
division_width = width / 20 # Assuming 20 divisions
left_boundary = int((left_division - 1) * division_width)
right_boundary = int(right_division * division_width)
# Find person bounding box and center in cutout
cutout_image = image_cv[:, left_boundary:right_boundary].copy()
# Get YOLO detections for person bounding box
results = model(cutout_image, classes=[0])
# Default values
cutout_center_x = cutout_image.shape[1] // 2
cutout_center_y = cutout_image.shape[0] // 2
person_top = 0.0
person_height = float(cutout_image.shape[0])
if results and len(results[0].boxes) > 0:
# Get person detection
boxes = results[0].boxes.xyxy.cpu().numpy()
if len(boxes) == 1:
# Single person
x1, y1, x2, y2 = boxes[0]
cutout_center_x = int((x1 + x2) // 2)
cutout_center_y = int((y1 + y2) // 2)
person_top = y1
person_height = y2 - y1
else:
# Multiple persons - merge bounding boxes
left_x = min(box[0] for box in boxes)
right_x = max(box[2] for box in boxes)
top_y = min(box[1] for box in boxes) # Top of highest person
bottom_y = max(box[3] for box in boxes) # Bottom of lowest person
cutout_center_x = int((left_x + right_x) // 2)
cutout_center_y = int((top_y + bottom_y) // 2)
person_top = top_y
person_height = bottom_y - top_y
# Scale back to original image
original_center_x = left_boundary + cutout_center_x
original_center_y = cutout_center_y
original_person_top = (
person_top # Already in original image space since we didn't crop vertically
)
original_person_height = person_height # Same in original space
# Define colors for different crops (BGR format)
colors = {
"cutout": (0, 165, 255), # Orange
"16:9": (0, 255, 0), # Green
"9:16": (255, 0, 0), # Blue
"half": (255, 255, 0), # Cyan
"third": (255, 0, 255), # Magenta
"two_thirds": (0, 255, 255), # Yellow
}
# Define line thickness and font
thickness = 3
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.8
font_thickness = 2
# 1. Draw cutout region (original divisions)
cv2.rectangle(
visualization,
(left_boundary, 0),
(right_boundary, height),
colors["cutout"],
thickness,
)
cv2.putText(
visualization,
"Cutout",
(left_boundary + 5, 30),
font,
font_scale,
colors["cutout"],
font_thickness,
)
# 2. Create 16:9 and 9:16 versions of the cutout - CENTERED on person
cutout_width = right_boundary - left_boundary
cutout_height = height
# For 16:9 version with 20% margin above person
aspect_16_9 = 16 / 9
target_height_16_9 = int(cutout_width / aspect_16_9)
if target_height_16_9 <= height:
# Calculate 20% of person height for top margin
top_margin = int(original_person_height * 0.2)
# Start 20% above the person's top
y_start = int(max(0, original_person_top - top_margin))
# If this would make the crop exceed the bottom, adjust y_start
if y_start + target_height_16_9 > height:
y_start = int(max(0, height - target_height_16_9))
y_end = int(min(height, y_start + target_height_16_9))
cv2.rectangle(
visualization,
(left_boundary, y_start),
(right_boundary, y_end),
colors["16:9"],
thickness,
)
cv2.putText(
visualization,
"16:9",
(left_boundary + 5, y_start + 30),
font,
font_scale,
colors["16:9"],
font_thickness,
)
# For 9:16 version centered on person
aspect_9_16 = 9 / 16
target_width_9_16 = int(cutout_height * aspect_9_16)
if target_width_9_16 <= cutout_width:
# Center horizontally around person
x_start = max(
0,
min(
left_boundary + cutout_width - target_width_9_16,
original_center_x - target_width_9_16 // 2,
),
)
x_end = x_start + target_width_9_16
cv2.rectangle(
visualization, (x_start, 0), (x_end, height), colors["9:16"], thickness
)
cv2.putText(
visualization,
"9:16",
(x_start + 5, 60),
font,
font_scale,
colors["9:16"],
font_thickness,
)
# 3. Draw centered layout variations
# Half width layout
half_width = width // 2
half_left_x = max(0, min(width - half_width, original_center_x - half_width // 2))
half_right_x = half_left_x + half_width
cv2.rectangle(
visualization,
(half_left_x, 0),
(half_right_x, height),
colors["half"],
thickness,
)
cv2.putText(
visualization,
"Half Width",
(half_left_x + 5, 90),
font,
font_scale,
colors["half"],
font_thickness,
)
# Third width layout
third_width = width // 3
third_left_x = max(
0, min(width - third_width, original_center_x - third_width // 2)
)
third_right_x = third_left_x + third_width
cv2.rectangle(
visualization,
(third_left_x, 0),
(third_right_x, height),
colors["third"],
thickness,
)
cv2.putText(
visualization,
"Third Width",
(third_left_x + 5, 120),
font,
font_scale,
colors["third"],
font_thickness,
)
# Two-thirds width layout
two_thirds_width = (width * 2) // 3
two_thirds_left_x = max(
0, min(width - two_thirds_width, original_center_x - two_thirds_width // 2)
)
two_thirds_right_x = two_thirds_left_x + two_thirds_width
cv2.rectangle(
visualization,
(two_thirds_left_x, 0),
(two_thirds_right_x, height),
colors["two_thirds"],
thickness,
)
cv2.putText(
visualization,
"Two-Thirds Width",
(two_thirds_left_x + 5, 150),
font,
font_scale,
colors["two_thirds"],
font_thickness,
)
# 4. Draw center point of person(s)
center_radius = 8
cv2.circle(
visualization,
(original_center_x, height // 2),
center_radius,
(255, 255, 255),
-1,
)
cv2.circle(
visualization, (original_center_x, height // 2), center_radius, (0, 0, 0), 2
)
cv2.putText(
visualization,
"Person Center",
(original_center_x + 10, height // 2),
font,
font_scale,
(255, 255, 255),
font_thickness,
)
# Convert back to PIL format
visualization_pil = Image.fromarray(cv2.cvtColor(visualization, cv2.COLOR_BGR2RGB))
return visualization_pil
def get_image_crop(cid=None, rsid=None, uid=None):
"""
Function that returns both 16:9 and 9:16 crops and layout variations for visualization.
Returns:
gr.Gallery: Gallery of all generated images
"""
# Uncomment this line when using Firebase
# image_paths = get_sprite_firebase(cid, rsid, uid)
# For testing, use a local image path
image_paths = ["sprite1.jpg", "sprite2.jpg"]
# Lists to store all images
all_images = []
all_captions = []
for image_path in image_paths:
# Load image (from local file or URL)
try:
if image_path.startswith(("http://", "https://")):
response = requests.get(image_path)
input_image = Image.open(BytesIO(response.content))
else:
input_image = Image.open(image_path)
except Exception as e:
print(f"Error loading image {image_path}: {e}")
continue
# Get the middle thumbnail
mid_image = get_middle_thumbnail(input_image)
# Add numbered divisions for GPT-4V analysis
numbered_mid_image = add_top_numbers(
input_image=mid_image,
num_divisions=20,
margin=50,
font_size=30,
dot_spacing=20,
)
# Analyze the image to get optimal crop divisions
# This uses GPT-4V to identify the optimal crop points
(
_,
_,
_,
left_division,
right_division,
) = analyze_image(numbered_mid_image, remove_unwanted_prompt(2), mid_image)
# Safety check for divisions
if left_division <= 0:
left_division = 1
if right_division > 20:
right_division = 20
if left_division >= right_division:
left_division = 1
right_division = 20
print(f"Using divisions: left={left_division}, right={right_division}")
# Create layouts and cutouts
layouts, cutout_image, cutout_16_9, cutout_9_16 = create_layouts(
mid_image, left_division, right_division
)
# Create the visualization with all crops overlaid on original
all_crops_visualization = draw_all_crops_on_original(
mid_image, left_division, right_division
)
# Start with the visualization showing all crops
all_images.append(all_crops_visualization)
all_captions.append(f"All Crops Visualization {all_crops_visualization.size}")
# Add input and middle image to gallery
all_images.append(input_image)
all_captions.append(f"Input Image {input_image.size}")
all_images.append(mid_image)
all_captions.append(f"Middle Thumbnail {mid_image.size}")
# Add cutout images to gallery
all_images.append(cutout_image)
all_captions.append(f"Cutout Image {cutout_image.size}")
all_images.append(cutout_16_9)
all_captions.append(f"16:9 Crop {cutout_16_9.size}")
all_images.append(cutout_9_16)
all_captions.append(f"9:16 Crop {cutout_9_16.size}")
# Add layout variations
for i, layout in enumerate(layouts):
label = ["Half Width", "Third Width", "Two-Thirds Width"][i]
all_images.append(layout)
all_captions.append(f"{label} {layout.size}")
# Return gallery with all images
return gr.Gallery(value=list(zip(all_images, all_captions)))
|