File size: 26,227 Bytes
09425e4
adf4e91
09425e4
 
 
adf4e91
 
 
21057c0
 
 
4efdaca
75feebc
09425e4
 
 
5416d7e
09425e4
23fc48e
 
 
 
a24d57f
6b83c96
 
898b233
6b83c96
dd57ac1
 
37287c3
dd57ac1
 
0f83e13
dd57ac1
 
e8e9f36
dd57ac1
 
 
37287c3
dd57ac1
e8e9f36
dd57ac1
 
 
e8e9f36
dd57ac1
 
0f83e13
 
dd57ac1
 
 
 
4efdaca
 
e8e9f36
898b233
dd57ac1
 
 
4efdaca
dd57ac1
 
 
 
 
898b233
 
 
 
8498900
764338a
8498900
 
 
 
 
 
 
 
 
 
 
 
fc85021
8498900
a24d57f
9c2d52b
 
 
1e7d342
9c2d52b
1e7d342
 
 
9c2d52b
 
14ba4fb
 
9c2d52b
 
 
eb33652
 
9c2d52b
eb33652
9c2d52b
eb33652
 
9c2d52b
eb33652
 
 
14ba4fb
c1b170a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb33652
8fbf2ce
eb33652
8fbf2ce
dfde411
eb33652
 
 
f36ef67
14ba4fb
 
 
eb33652
 
21057c0
fecd16e
 
 
 
 
 
 
 
 
37b73c5
 
 
 
 
 
 
 
 
 
09425e4
 
37b73c5
09425e4
 
 
21057c0
 
 
 
 
 
 
3df9cb1
adf4e91
65a422d
09425e4
 
 
23fc48e
 
 
 
77f24d4
 
 
 
 
 
 
 
21057c0
77f24d4
 
 
21057c0
 
4efdaca
7abd251
77f24d4
14ba4fb
77f24d4
 
 
 
 
14ba4fb
77f24d4
 
 
c522881
77f24d4
 
 
 
 
 
21057c0
09425e4
 
 
 
 
 
 
 
 
 
 
 
764338a
77f24d4
 
 
14ba4fb
09425e4
37b73c5
 
 
 
 
 
 
 
764338a
37b73c5
 
 
09425e4
37b73c5
 
 
 
 
 
 
 
 
 
 
 
eb33652
 
37b73c5
 
 
eb33652
 
 
37b73c5
 
 
e22ec09
37b73c5
 
 
 
eb33652
 
 
37b73c5
 
eb33652
37b73c5
 
eb33652
 
 
 
37b73c5
e809da8
 
 
 
 
 
 
37b73c5
 
 
 
 
 
 
3df9cb1
 
 
 
 
 
37b73c5
 
 
 
 
 
 
 
 
09425e4
 
 
 
 
 
37b73c5
09425e4
 
21057c0
09425e4
8359520
680df35
 
 
 
da561f9
680df35
 
 
 
2dd4970
 
 
 
 
 
 
 
7080e6e
21057c0
 
 
 
 
 
3df9cb1
65a422d
 
21057c0
37b73c5
 
 
 
 
 
 
 
3df9cb1
37b73c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df9cb1
37b73c5
 
 
 
 
 
 
 
 
 
 
 
 
 
3df9cb1
37b73c5
 
 
 
 
21057c0
adf4e91
21057c0
 
 
 
 
3df9cb1
adf4e91
37b73c5
3df9cb1
9cff658
 
 
 
 
adf4e91
37b73c5
9cff658
 
 
 
 
3df9cb1
21057c0
adf4e91
 
 
 
 
 
 
 
 
 
 
 
 
 
21057c0
8498900
 
adf4e91
21057c0
 
adf4e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09425e4
1e05855
 
 
 
 
 
 
 
 
 
37b73c5
3df9cb1
37b73c5
1e05855
 
 
 
37b73c5
3df9cb1
37b73c5
1e05855
37b73c5
 
1e05855
 
37b73c5
 
21057c0
 
 
 
 
 
 
 
 
 
 
3df9cb1
21057c0
1e05855
 
 
 
37b73c5
 
 
21057c0
 
 
 
7abd251
 
3df9cb1
21057c0
37b73c5
21057c0
09425e4
 
 
 
 
 
 
21057c0
fdef517
09425e4
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import json
from typing import Generator, List

import gradio as gr
from openai import OpenAI
from transcript import TranscriptProcessor
from utils import css, get_transcript_for_url, head, setup_openai_key
from utils import openai_tools as tools


def get_initial_analysis(
    transcript_processor: TranscriptProcessor, cid, rsid, origin, ct, uid
) -> Generator[str, None, None]:
    """Perform initial analysis of the transcript using OpenAI."""
    try:
        transcript = transcript_processor.get_transcript()
        speaker_mapping = transcript_processor.speaker_mapping
        client = OpenAI()
        if "localhost" in origin:
            link_start = "http"
        else:
            link_start = "https"
        if ct == "si":  # street interview
            prompt = f"""This is a transcript for a street interview. Call Details are as follows:
User ID UID: {uid}
RSID: {rsid}
Transcript: {transcript}

Your task is to analyze this street interview transcript and identify the final/best timestamps for each topic or question discussed. Here are the key rules:
The user might repeat the answer to the question sometimes, you need to pick the very last answer intelligently

1. For any topic/answer that appears multiple times in the transcript (even partially):
   - The LAST occurrence is always considered the best version. If the same thing is said multiple times, the last time is the best, all previous times are considered as additional takes.
   - This includes cases where parts of an answer are scattered throughout the transcript
   - Even slight variations of the same answer should be tracked
   - List timestamps for ALL takes, with the final take highlighted as the best answer

2. Introduction handling:
   - Question 1 is ALWAYS the speaker's introduction/self-introduction
   - If someone introduces themselves multiple times, use the last introduction as best answer
   - Include all variations of how they state their name/background
   - List ALL introduction timestamps chronologically

3. Question sequence:
   - After the introduction, list questions in the order they were first asked
   - If a question or introduction is revisited later at any point, please use the later timestamp
   - Track partial answers to the same question across the transcript

You need to make sure that any words that are repeated, you need to pick the last of them.

Return format:

[Question Title]
Total takes: [X] (Include ONLY if content appears more than once)
- [Take 1. <div id='topic' style="display: inline"> 15s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{765}}&uid={{uid}})
- [Take 2. <div id='topic' style="display: inline"> 30s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{915}}&uid={{uid}})
...
- [Take X (Best) <div id='topic' style="display: inline"> 1m 10s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1050}}&uid={{uid}})

URL formatting:
- Convert timestamps to seconds (e.g., 10:13 → 613)
- Format: {link_start}://[origin]/colab/[cid]/[rsid]?st=[start_seconds]&et=[end_seconds]&uid=[unique_id]
- Parameters after RSID must start with ? and subsequent parameters use &

Example:
1. Introduction
Total takes: 2
- [Take 1. <div id='topic' style="display: inline"> 22s at 12:30 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
- [Take 2. <div id='topic' style="display: inline"> 43s at 14:45 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
3 [Take 3. (Best) <div id='topic' style="display: inline"> 58s at 16:20 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
"""
            completion = client.chat.completions.create(
                model="gpt-4o",
                messages=[
                    {
                        "role": "system",
                        "content": f"""You are analyzing a transcript for Call ID: {cid}, Session ID: {rsid}, Origin: {origin}, Call Type: {ct}.
    CORE REQUIREMENT:
- TIMESTAMPS: A speaker can repeat the answer to a question multiple times. You need to pick the last answer very carefully and choose that as best take. Make sure that that same answer is not repeated again after the best answer.

    YOU SHOULD Prioritize accuracy in timestamp at every cost. Read the Transcript carefully and decide where an answer starts and ends. You will have speaker labels so you need to be very sharp.""",
                    },
                    {"role": "user", "content": prompt},
                ],
                stream=True,
                temperature=0.1,
            )
        else:
            system_prompt = f"""You are a helpful assistant developed by Roll.AI(Leading AI tool for Remote production) who is analyzing the transcript for a RollAI Call. Following are the details: 
- Call ID: {cid}
- Session ID: {rsid}
- Origin: {origin}
- Call Type: {ct}
- Speakers: {", ".join(speaker_mapping.values())}
- Diarized Transcript: {transcript}


You are tasked with creating social media clips from the transcript, You need to shortlist the atleast two short clips for EACH SPEAKER. There are some requirments:

CORE REQUIREMENTS:
1. SPEAKER Overlap in the CLIP: When specifying the duration for the script, make sure that in that duration:
   - There is only continuous dialogue from that speaker.
   - As soon as another speaker starts talking or the topic ends, the clip MUST end.

2. DURATION RULES:
   - Each clip must be between 20 seconds to 120 seconds.

3. SPEAKER COVERAGE:
   - Minimum 2 topics per speaker, aim for 3 if good content exists

CRITICAL: When analyzing timestamps, you must verify that in the duration specified:
1. No other speaker talks during the selected timeframe
2. The speaker talks continuously for at least 20 seconds
3. The clip ends BEFORE any interruption or speaker change
"""
            #             start_end_sentence_prompt = f"""Given a transcript with speakers {" , ".join(speaker_mapping.values())}, analyze the content and identify segments that would make compelling social media clips. For each speaker, find complete topics that meet the following criteria:

            # Key Requirements:
            # 1. Speaker Isolation
            # - Each clip must contain only ONE speaker
            # - No interruptions from other speakers allowed within the clip
            # - Once another speaker interrupts, the previous speaker's clip must end

            # 2. Duration Guidelines
            # - Minimum: 20 seconds of continuous speech
            # - Maximum: 100 seconds
            # - Must capture complete thoughts/topics

            # 3. Content Selection
            # - Focus on interesting or noteworthy content
            # - Topics should be self-contained and coherent
            # - Must include both the starting and ending sentences that bound the topic
            # - You can do 2 or 3 topics per speaker if there is more content for that speaker.

            # Expected Output Format:
            # ```json
            # {{
            #     "Speaker_Name": [
            #         {{
            #             "Topic_Title": "<descriptive title of the topic>",
            #             "Starting_Sentence": "<exact first sentence of the topic>",
            #             "Ending_Sentence": "<exact last sentence before any interruption or topic change>"
            #         }},
            #         // Additional topics for this speaker...
            #     ],
            #     // Additional speakers...
            # }}

            # Example:
            # If a transcript contains:
            # [10:13] Speaker1: "First sentence..."
            # [10:20] Speaker1: "nth sentence..."
            # [10:17] Speaker2: "Interruption..."
            # [10:19] Speaker1: "nth+1 sentence..."

            # The valid ending sentence for Speaker1 would only include the first n sentences, ending before Speaker2's interruption.

            # Important:
            # - Ensure each clip represents a single, uninterrupted segment from one speaker
            # - Include only complete thoughts/statements
            # - Verify that no other speakers appear between the selected start and end sentences
            # """

            #             sentence_finding_completion = client.chat.completions.create(
            #                 model="gpt-4o",
            #                 messages=[
            #                     {"role": "system", "content": start_end_sentence_prompt},
            #                 ],
            #                 stream=False,
            #                 temperature=0.2,
            #             )
            #             sentence_finding = sentence_finding_completion.choices[0].message.content
            #             sentence_finding_json = sentence_finding[
            #                 sentence_finding.find("{") : sentence_finding.rfind("}") + 1
            #             ]

            user_prompt = f"""User ID: {uid}

Your task is to find the starting time, ending time, and the duration for the each topic in the above Short Listed Topics. You need to return the answer in the following format.
Please make sure that in the duration of 1 speaker, there is no segment of any other speaker. The shortlisted duration must be of a single speaker

Return Format requirements:
SPEAKER FORMAT:
**Speaker Name**
1. [Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
2. [Topic title <div id='topic' style="display: inline"> 43s at 14:45 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
3. [Topic title <div id='topic' style="display: inline"> 58s at 16:20 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
**Speaker Name**
....
"""
            completion = client.chat.completions.create(
                model="gpt-4o",
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_prompt},
                ],
                stream=True,
                temperature=0.1,
            )

        collected_messages = []
        # Iterate through the stream
        for chunk in completion:
            if chunk.choices[0].delta.content is not None:
                chunk_message = chunk.choices[0].delta.content
                collected_messages.append(chunk_message)
                # Yield the accumulated message so far
                yield "".join(collected_messages)

    except Exception as e:
        print(f"Error in initial analysis: {str(e)}")
        yield "An error occurred during initial analysis. Please check your API key and file path."


def chat(
    message: str,
    chat_history: List,
    transcript_processor: TranscriptProcessor,
    cid,
    rsid,
    origin,
    ct,
    uid,
):

    try:
        client = OpenAI()

        if "localhost" in origin:
            link_start = "http"
        else:
            link_start = "https"
        speaker_mapping = transcript_processor.speaker_mapping
        prompt = f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. The user will ask you questions regarding the social media clips from the transcript.
Call ID is {cid},
Session ID is {rsid},
origin is {origin},
Call Type is {ct}.
Speakers: {", ".join(speaker_mapping.values())}
Transcript: {transcript_processor.get_transcript()}

If a user asks timestamps for a specific topic or things, find the start time and end time of that specific topic and return answer in the format:
Answers and URLs should be formated as follows:
[Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
For Example:
If the start time is 10:13 and end time is 10:18, the url will be:
{link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618&uid=82314
In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
You can include multiple links here that can related to the user answer. ALWAYS ANSWER FROM THE TRANSCRIPT.
RULE: When selecting timestamps for the answer, always use the **starting time (XX:YY)** as the reference point for your response, with the duration (Z seconds) calculated from this starting time, not the ending time of the segment.

Example 1:
User: Suggest me some clips that can go viral on Instagram.
Response:
1. [Clip 1 <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
User: Give me the URL where each person has introduced themselves. 
2. [Clip 2 <div id='topic' style="display: inline"> 10s at 10:00 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{600}}&et={{610}}&uid={{uid}})

Example 2:
Provide the exact timestamp where the person begins their introduction, typically starting with phrases like "Hi," "Hello," "I am," or "My name is," and include the full introduction, covering everything they say about themselves, including their name, role, background, current responsibilities, organization, and any additional details they provide about their work or personal interests.
1. [Person Name1 <div id='topic' style="display: inline"> 43s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
2. [Person Name2 <div id='topic' style="display: inline"> 58s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
....

If the user provides a link to the agenda, use the correct_speaker_name_with_url function to correct the speaker names based on the agenda.
If the user provides the correct call type, use the correct_call_type function to correct the call type. Call Type for street interviews is 'si'.
"""
        messages = [{"role": "system", "content": prompt}]

        for user_msg, assistant_msg in chat_history:
            if user_msg is not None:  # Skip the initial message where user_msg is None
                messages.append({"role": "user", "content": user_msg})
            if assistant_msg is not None:
                messages.append({"role": "assistant", "content": assistant_msg})

        # Add the current message
        messages.append({"role": "user", "content": message})

        completion = client.chat.completions.create(
            model="gpt-4o",
            messages=messages,
            tools=tools,
            stream=True,
            temperature=0.3,
        )
        collected_messages = []
        tool_calls_detected = False

        for chunk in completion:
            if chunk.choices[0].delta.tool_calls:
                tool_calls_detected = True
                # Handle tool calls without streaming
                response = client.chat.completions.create(
                    model="gpt-4o",
                    messages=messages,
                    tools=tools,
                )

                if response.choices[0].message.tool_calls:
                    tool_call = response.choices[0].message.tool_calls[0]
                    if tool_call.function.name == "correct_speaker_name_with_url":
                        args = eval(tool_call.function.arguments)
                        url = args.get("url", None)
                        if url:
                            transcript_processor.correct_speaker_mapping_with_agenda(
                                url
                            )
                            corrected_speaker_mapping = (
                                transcript_processor.speaker_mapping
                            )
                            messages.append(response.choices[0].message)

                            function_call_result_message = {
                                "role": "tool",
                                "content": json.dumps(
                                    {
                                        "speaker_mapping": f"Corrected Speaker Mapping... {corrected_speaker_mapping}"
                                    }
                                ),
                                "name": tool_call.function.name,
                                "tool_call_id": tool_call.id,
                            }
                            messages.append(function_call_result_message)

                            # Get final response after tool call
                            final_response = client.chat.completions.create(
                                model="gpt-4o",
                                messages=messages,
                                stream=True,
                            )

                            collected_chunk = ""
                            for final_chunk in final_response:
                                if final_chunk.choices[0].delta.content:
                                    collected_chunk += final_chunk.choices[
                                        0
                                    ].delta.content
                                    yield collected_chunk
                            return
                        else:
                            function_call_result_message = {
                                "role": "tool",
                                "content": "No URL Provided",
                                "name": tool_call.function.name,
                                "tool_call_id": tool_call.id,
                            }

                    elif tool_call.function.name == "correct_call_type":
                        args = eval(tool_call.function.arguments)
                        call_type = args.get("call_type", None)
                        if call_type:
                            # Stream the analysis for corrected call type
                            for content in get_initial_analysis(
                                transcript_processor,
                                call_type,
                                rsid,
                                origin,
                                call_type,
                                uid,
                            ):
                                yield content
                            return
                break  # Exit streaming loop if tool calls detected

            if not tool_calls_detected and chunk.choices[0].delta.content is not None:
                chunk_message = chunk.choices[0].delta.content
                collected_messages.append(chunk_message)
                yield "".join(collected_messages)

    except Exception as e:
        print(f"Unexpected error in chat: {str(e)}")
        import traceback

        print(f"Traceback: {traceback.format_exc()}")
        yield "Sorry, there was an error processing your request."


def create_chat_interface():
    """Create and configure the chat interface."""

    with gr.Blocks(
        fill_height=True,
        fill_width=True,
        css=css,
        head=head,
        theme=gr.themes.Default(
            font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"]
        ),
    ) as demo:
        chatbot = gr.Chatbot(
            elem_id="chatbot_box",
            layout="bubble",
            show_label=False,
            show_share_button=False,
            show_copy_all_button=False,
            show_copy_button=False,
        )
        msg = gr.Textbox(elem_id="chatbot_textbox", show_label=False)
        transcript_processor_state = gr.State()  # maintain state of imp things
        call_id_state = gr.State()
        colab_id_state = gr.State()
        origin_state = gr.State()
        ct_state = gr.State()
        turl_state = gr.State()
        uid_state = gr.State()
        iframe_html = "<iframe id='link-frame'></iframe>"
        gr.HTML(value=iframe_html)  # Add iframe to the UI

        def respond(
            message: str,
            chat_history: List,
            transcript_processor,
            cid,
            rsid,
            origin,
            ct,
            uid,
        ):
            if not transcript_processor:
                bot_message = "Transcript processor not initialized."
                chat_history.append((message, bot_message))
                return "", chat_history

            chat_history.append((message, ""))
            for chunk in chat(
                message,
                chat_history[:-1],  # Exclude the current incomplete message
                transcript_processor,
                cid,
                rsid,
                origin,
                ct,
                uid,
            ):
                chat_history[-1] = (message, chunk)
                yield "", chat_history

        msg.submit(
            respond,
            [
                msg,
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                uid_state,
            ],
            [msg, chatbot],
        )

        # Handle initial loading with streaming
        def on_app_load(request: gr.Request):
            turls = None
            cid = request.query_params.get("cid", None)
            rsid = request.query_params.get("rsid", None)
            origin = request.query_params.get("origin", None)
            ct = request.query_params.get("ct", None)
            turl = request.query_params.get("turl", None)
            uid = request.query_params.get("uid", None)
            pnames = request.query_params.get("pnames", None)

            required_params = ["cid", "rsid", "origin", "ct", "turl", "uid"]
            missing_params = [
                param
                for param in required_params
                if request.query_params.get(param) is None
            ]
            print("Missing Params", missing_params)

            if missing_params:
                error_message = (
                    f"Missing required parameters: {', '.join(missing_params)}"
                )
                chatbot_value = [(None, error_message)]
                return [chatbot_value, None, None, None, None, None, None, None]

            if ct == "rp":
                # split turls based on ,
                turls = turl.split(",")
                pnames = [pname.replace("_", " ") for pname in pnames.split(",")]
                print(pnames)

            # try:

            if turls:
                transcript_data = []
                for turl in turls:
                    print("Getting Transcript for URL")
                    transcript_data.append(get_transcript_for_url(turl))
                print("Now creating Processor")
                transcript_processor = TranscriptProcessor(
                    transcript_data=transcript_data,
                    call_type=ct,
                    person_names=pnames,
                )

            else:
                transcript_data = get_transcript_for_url(turl)
                transcript_processor = TranscriptProcessor(
                    transcript_data=transcript_data, call_type=ct
                )

            # Initialize with empty message
            chatbot_value = [(None, "")]

            # Return initial values with the transcript processor
            return [
                chatbot_value,
                transcript_processor,
                cid,
                rsid,
                origin,
                ct,
                turl,
                uid,
            ]
            # except Exception as e:
            #     print(e)
            #     error_message = f"Error processing call_id {cid}: {str(e)}"
            #     chatbot_value = [(None, error_message)]
            #     return [chatbot_value, None, None, None, None, None, None, None]

        def display_processing_message(chatbot_value):
            """Display the processing message while maintaining state."""
            # Create new chatbot value with processing message
            new_chatbot_value = [
                (None, "Video is being processed. Please wait for the results...")
            ]

            # Return all states to maintain them
            return new_chatbot_value

        def stream_initial_analysis(
            chatbot_value, transcript_processor, cid, rsid, origin, ct, uid
        ):
            if not transcript_processor:
                return chatbot_value

            try:
                for chunk in get_initial_analysis(
                    transcript_processor, cid, rsid, origin, ct, uid
                ):
                    # Update the existing message instead of creating a new one
                    chatbot_value[0] = (None, chunk)
                    yield chatbot_value
            except Exception as e:
                chatbot_value[0] = (None, f"Error during analysis: {str(e)}")
                yield chatbot_value

        demo.load(
            on_app_load,
            inputs=None,
            outputs=[
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                turl_state,
                uid_state,
            ],
        ).then(
            display_processing_message,
            inputs=[chatbot],
            outputs=[chatbot],
        ).then(
            stream_initial_analysis,
            inputs=[
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                uid_state,
            ],
            outputs=[chatbot],
        )
    return demo


def main():
    """Main function to run the application."""
    try:
        setup_openai_key()
        demo = create_chat_interface()
        demo.launch(share=True)
    except Exception as e:
        print(f"Error starting application: {str(e)}")
        raise


if __name__ == "__main__":
    main()