Spaces:
Running
Running
File size: 26,227 Bytes
09425e4 adf4e91 09425e4 adf4e91 21057c0 4efdaca 75feebc 09425e4 5416d7e 09425e4 23fc48e a24d57f 6b83c96 898b233 6b83c96 dd57ac1 37287c3 dd57ac1 0f83e13 dd57ac1 e8e9f36 dd57ac1 37287c3 dd57ac1 e8e9f36 dd57ac1 e8e9f36 dd57ac1 0f83e13 dd57ac1 4efdaca e8e9f36 898b233 dd57ac1 4efdaca dd57ac1 898b233 8498900 764338a 8498900 fc85021 8498900 a24d57f 9c2d52b 1e7d342 9c2d52b 1e7d342 9c2d52b 14ba4fb 9c2d52b eb33652 9c2d52b eb33652 9c2d52b eb33652 9c2d52b eb33652 14ba4fb c1b170a eb33652 8fbf2ce eb33652 8fbf2ce dfde411 eb33652 f36ef67 14ba4fb eb33652 21057c0 fecd16e 37b73c5 09425e4 37b73c5 09425e4 21057c0 3df9cb1 adf4e91 65a422d 09425e4 23fc48e 77f24d4 21057c0 77f24d4 21057c0 4efdaca 7abd251 77f24d4 14ba4fb 77f24d4 14ba4fb 77f24d4 c522881 77f24d4 21057c0 09425e4 764338a 77f24d4 14ba4fb 09425e4 37b73c5 764338a 37b73c5 09425e4 37b73c5 eb33652 37b73c5 eb33652 37b73c5 e22ec09 37b73c5 eb33652 37b73c5 eb33652 37b73c5 eb33652 37b73c5 e809da8 37b73c5 3df9cb1 37b73c5 09425e4 37b73c5 09425e4 21057c0 09425e4 8359520 680df35 da561f9 680df35 2dd4970 7080e6e 21057c0 3df9cb1 65a422d 21057c0 37b73c5 3df9cb1 37b73c5 3df9cb1 37b73c5 3df9cb1 37b73c5 21057c0 adf4e91 21057c0 3df9cb1 adf4e91 37b73c5 3df9cb1 9cff658 adf4e91 37b73c5 9cff658 3df9cb1 21057c0 adf4e91 21057c0 8498900 adf4e91 21057c0 adf4e91 09425e4 1e05855 37b73c5 3df9cb1 37b73c5 1e05855 37b73c5 3df9cb1 37b73c5 1e05855 37b73c5 1e05855 37b73c5 21057c0 3df9cb1 21057c0 1e05855 37b73c5 21057c0 7abd251 3df9cb1 21057c0 37b73c5 21057c0 09425e4 21057c0 fdef517 09425e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
import json
from typing import Generator, List
import gradio as gr
from openai import OpenAI
from transcript import TranscriptProcessor
from utils import css, get_transcript_for_url, head, setup_openai_key
from utils import openai_tools as tools
def get_initial_analysis(
transcript_processor: TranscriptProcessor, cid, rsid, origin, ct, uid
) -> Generator[str, None, None]:
"""Perform initial analysis of the transcript using OpenAI."""
try:
transcript = transcript_processor.get_transcript()
speaker_mapping = transcript_processor.speaker_mapping
client = OpenAI()
if "localhost" in origin:
link_start = "http"
else:
link_start = "https"
if ct == "si": # street interview
prompt = f"""This is a transcript for a street interview. Call Details are as follows:
User ID UID: {uid}
RSID: {rsid}
Transcript: {transcript}
Your task is to analyze this street interview transcript and identify the final/best timestamps for each topic or question discussed. Here are the key rules:
The user might repeat the answer to the question sometimes, you need to pick the very last answer intelligently
1. For any topic/answer that appears multiple times in the transcript (even partially):
- The LAST occurrence is always considered the best version. If the same thing is said multiple times, the last time is the best, all previous times are considered as additional takes.
- This includes cases where parts of an answer are scattered throughout the transcript
- Even slight variations of the same answer should be tracked
- List timestamps for ALL takes, with the final take highlighted as the best answer
2. Introduction handling:
- Question 1 is ALWAYS the speaker's introduction/self-introduction
- If someone introduces themselves multiple times, use the last introduction as best answer
- Include all variations of how they state their name/background
- List ALL introduction timestamps chronologically
3. Question sequence:
- After the introduction, list questions in the order they were first asked
- If a question or introduction is revisited later at any point, please use the later timestamp
- Track partial answers to the same question across the transcript
You need to make sure that any words that are repeated, you need to pick the last of them.
Return format:
[Question Title]
Total takes: [X] (Include ONLY if content appears more than once)
- [Take 1. <div id='topic' style="display: inline"> 15s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{765}}&uid={{uid}})
- [Take 2. <div id='topic' style="display: inline"> 30s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{915}}&uid={{uid}})
...
- [Take X (Best) <div id='topic' style="display: inline"> 1m 10s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1050}}&uid={{uid}})
URL formatting:
- Convert timestamps to seconds (e.g., 10:13 → 613)
- Format: {link_start}://[origin]/colab/[cid]/[rsid]?st=[start_seconds]&et=[end_seconds]&uid=[unique_id]
- Parameters after RSID must start with ? and subsequent parameters use &
Example:
1. Introduction
Total takes: 2
- [Take 1. <div id='topic' style="display: inline"> 22s at 12:30 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
- [Take 2. <div id='topic' style="display: inline"> 43s at 14:45 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
3 [Take 3. (Best) <div id='topic' style="display: inline"> 58s at 16:20 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
"""
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": f"""You are analyzing a transcript for Call ID: {cid}, Session ID: {rsid}, Origin: {origin}, Call Type: {ct}.
CORE REQUIREMENT:
- TIMESTAMPS: A speaker can repeat the answer to a question multiple times. You need to pick the last answer very carefully and choose that as best take. Make sure that that same answer is not repeated again after the best answer.
YOU SHOULD Prioritize accuracy in timestamp at every cost. Read the Transcript carefully and decide where an answer starts and ends. You will have speaker labels so you need to be very sharp.""",
},
{"role": "user", "content": prompt},
],
stream=True,
temperature=0.1,
)
else:
system_prompt = f"""You are a helpful assistant developed by Roll.AI(Leading AI tool for Remote production) who is analyzing the transcript for a RollAI Call. Following are the details:
- Call ID: {cid}
- Session ID: {rsid}
- Origin: {origin}
- Call Type: {ct}
- Speakers: {", ".join(speaker_mapping.values())}
- Diarized Transcript: {transcript}
You are tasked with creating social media clips from the transcript, You need to shortlist the atleast two short clips for EACH SPEAKER. There are some requirments:
CORE REQUIREMENTS:
1. SPEAKER Overlap in the CLIP: When specifying the duration for the script, make sure that in that duration:
- There is only continuous dialogue from that speaker.
- As soon as another speaker starts talking or the topic ends, the clip MUST end.
2. DURATION RULES:
- Each clip must be between 20 seconds to 120 seconds.
3. SPEAKER COVERAGE:
- Minimum 2 topics per speaker, aim for 3 if good content exists
CRITICAL: When analyzing timestamps, you must verify that in the duration specified:
1. No other speaker talks during the selected timeframe
2. The speaker talks continuously for at least 20 seconds
3. The clip ends BEFORE any interruption or speaker change
"""
# start_end_sentence_prompt = f"""Given a transcript with speakers {" , ".join(speaker_mapping.values())}, analyze the content and identify segments that would make compelling social media clips. For each speaker, find complete topics that meet the following criteria:
# Key Requirements:
# 1. Speaker Isolation
# - Each clip must contain only ONE speaker
# - No interruptions from other speakers allowed within the clip
# - Once another speaker interrupts, the previous speaker's clip must end
# 2. Duration Guidelines
# - Minimum: 20 seconds of continuous speech
# - Maximum: 100 seconds
# - Must capture complete thoughts/topics
# 3. Content Selection
# - Focus on interesting or noteworthy content
# - Topics should be self-contained and coherent
# - Must include both the starting and ending sentences that bound the topic
# - You can do 2 or 3 topics per speaker if there is more content for that speaker.
# Expected Output Format:
# ```json
# {{
# "Speaker_Name": [
# {{
# "Topic_Title": "<descriptive title of the topic>",
# "Starting_Sentence": "<exact first sentence of the topic>",
# "Ending_Sentence": "<exact last sentence before any interruption or topic change>"
# }},
# // Additional topics for this speaker...
# ],
# // Additional speakers...
# }}
# Example:
# If a transcript contains:
# [10:13] Speaker1: "First sentence..."
# [10:20] Speaker1: "nth sentence..."
# [10:17] Speaker2: "Interruption..."
# [10:19] Speaker1: "nth+1 sentence..."
# The valid ending sentence for Speaker1 would only include the first n sentences, ending before Speaker2's interruption.
# Important:
# - Ensure each clip represents a single, uninterrupted segment from one speaker
# - Include only complete thoughts/statements
# - Verify that no other speakers appear between the selected start and end sentences
# """
# sentence_finding_completion = client.chat.completions.create(
# model="gpt-4o",
# messages=[
# {"role": "system", "content": start_end_sentence_prompt},
# ],
# stream=False,
# temperature=0.2,
# )
# sentence_finding = sentence_finding_completion.choices[0].message.content
# sentence_finding_json = sentence_finding[
# sentence_finding.find("{") : sentence_finding.rfind("}") + 1
# ]
user_prompt = f"""User ID: {uid}
Your task is to find the starting time, ending time, and the duration for the each topic in the above Short Listed Topics. You need to return the answer in the following format.
Please make sure that in the duration of 1 speaker, there is no segment of any other speaker. The shortlisted duration must be of a single speaker
Return Format requirements:
SPEAKER FORMAT:
**Speaker Name**
1. [Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
2. [Topic title <div id='topic' style="display: inline"> 43s at 14:45 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
3. [Topic title <div id='topic' style="display: inline"> 58s at 16:20 </div>]({{link_start}}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
**Speaker Name**
....
"""
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
stream=True,
temperature=0.1,
)
collected_messages = []
# Iterate through the stream
for chunk in completion:
if chunk.choices[0].delta.content is not None:
chunk_message = chunk.choices[0].delta.content
collected_messages.append(chunk_message)
# Yield the accumulated message so far
yield "".join(collected_messages)
except Exception as e:
print(f"Error in initial analysis: {str(e)}")
yield "An error occurred during initial analysis. Please check your API key and file path."
def chat(
message: str,
chat_history: List,
transcript_processor: TranscriptProcessor,
cid,
rsid,
origin,
ct,
uid,
):
try:
client = OpenAI()
if "localhost" in origin:
link_start = "http"
else:
link_start = "https"
speaker_mapping = transcript_processor.speaker_mapping
prompt = f"""You are a helpful assistant analyzing transcripts and generating timestamps and URL. The user will ask you questions regarding the social media clips from the transcript.
Call ID is {cid},
Session ID is {rsid},
origin is {origin},
Call Type is {ct}.
Speakers: {", ".join(speaker_mapping.values())}
Transcript: {transcript_processor.get_transcript()}
If a user asks timestamps for a specific topic or things, find the start time and end time of that specific topic and return answer in the format:
Answers and URLs should be formated as follows:
[Topic title <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
For Example:
If the start time is 10:13 and end time is 10:18, the url will be:
{link_start}://roll.ai/colab/1234aq_12314/51234151?st=613&et=618&uid=82314
In the URL, make sure that after RSID there is ? and then rest of the fields are added via &.
You can include multiple links here that can related to the user answer. ALWAYS ANSWER FROM THE TRANSCRIPT.
RULE: When selecting timestamps for the answer, always use the **starting time (XX:YY)** as the reference point for your response, with the duration (Z seconds) calculated from this starting time, not the ending time of the segment.
Example 1:
User: Suggest me some clips that can go viral on Instagram.
Response:
1. [Clip 1 <div id='topic' style="display: inline"> 22s at 12:30 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{750}}&et={{772}}&uid={{uid}})
User: Give me the URL where each person has introduced themselves.
2. [Clip 2 <div id='topic' style="display: inline"> 10s at 10:00 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{600}}&et={{610}}&uid={{uid}})
Example 2:
Provide the exact timestamp where the person begins their introduction, typically starting with phrases like "Hi," "Hello," "I am," or "My name is," and include the full introduction, covering everything they say about themselves, including their name, role, background, current responsibilities, organization, and any additional details they provide about their work or personal interests.
1. [Person Name1 <div id='topic' style="display: inline"> 43s at 14:45 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{885}}&et={{928}}&uid={{uid}})
2. [Person Name2 <div id='topic' style="display: inline"> 58s at 16:20 </div>]({link_start}://{{origin}}/collab/{{cid}}/{{rsid}}?st={{980}}&et={{1038}}&uid={{uid}})
....
If the user provides a link to the agenda, use the correct_speaker_name_with_url function to correct the speaker names based on the agenda.
If the user provides the correct call type, use the correct_call_type function to correct the call type. Call Type for street interviews is 'si'.
"""
messages = [{"role": "system", "content": prompt}]
for user_msg, assistant_msg in chat_history:
if user_msg is not None: # Skip the initial message where user_msg is None
messages.append({"role": "user", "content": user_msg})
if assistant_msg is not None:
messages.append({"role": "assistant", "content": assistant_msg})
# Add the current message
messages.append({"role": "user", "content": message})
completion = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
stream=True,
temperature=0.3,
)
collected_messages = []
tool_calls_detected = False
for chunk in completion:
if chunk.choices[0].delta.tool_calls:
tool_calls_detected = True
# Handle tool calls without streaming
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
)
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
if tool_call.function.name == "correct_speaker_name_with_url":
args = eval(tool_call.function.arguments)
url = args.get("url", None)
if url:
transcript_processor.correct_speaker_mapping_with_agenda(
url
)
corrected_speaker_mapping = (
transcript_processor.speaker_mapping
)
messages.append(response.choices[0].message)
function_call_result_message = {
"role": "tool",
"content": json.dumps(
{
"speaker_mapping": f"Corrected Speaker Mapping... {corrected_speaker_mapping}"
}
),
"name": tool_call.function.name,
"tool_call_id": tool_call.id,
}
messages.append(function_call_result_message)
# Get final response after tool call
final_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
stream=True,
)
collected_chunk = ""
for final_chunk in final_response:
if final_chunk.choices[0].delta.content:
collected_chunk += final_chunk.choices[
0
].delta.content
yield collected_chunk
return
else:
function_call_result_message = {
"role": "tool",
"content": "No URL Provided",
"name": tool_call.function.name,
"tool_call_id": tool_call.id,
}
elif tool_call.function.name == "correct_call_type":
args = eval(tool_call.function.arguments)
call_type = args.get("call_type", None)
if call_type:
# Stream the analysis for corrected call type
for content in get_initial_analysis(
transcript_processor,
call_type,
rsid,
origin,
call_type,
uid,
):
yield content
return
break # Exit streaming loop if tool calls detected
if not tool_calls_detected and chunk.choices[0].delta.content is not None:
chunk_message = chunk.choices[0].delta.content
collected_messages.append(chunk_message)
yield "".join(collected_messages)
except Exception as e:
print(f"Unexpected error in chat: {str(e)}")
import traceback
print(f"Traceback: {traceback.format_exc()}")
yield "Sorry, there was an error processing your request."
def create_chat_interface():
"""Create and configure the chat interface."""
with gr.Blocks(
fill_height=True,
fill_width=True,
css=css,
head=head,
theme=gr.themes.Default(
font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"]
),
) as demo:
chatbot = gr.Chatbot(
elem_id="chatbot_box",
layout="bubble",
show_label=False,
show_share_button=False,
show_copy_all_button=False,
show_copy_button=False,
)
msg = gr.Textbox(elem_id="chatbot_textbox", show_label=False)
transcript_processor_state = gr.State() # maintain state of imp things
call_id_state = gr.State()
colab_id_state = gr.State()
origin_state = gr.State()
ct_state = gr.State()
turl_state = gr.State()
uid_state = gr.State()
iframe_html = "<iframe id='link-frame'></iframe>"
gr.HTML(value=iframe_html) # Add iframe to the UI
def respond(
message: str,
chat_history: List,
transcript_processor,
cid,
rsid,
origin,
ct,
uid,
):
if not transcript_processor:
bot_message = "Transcript processor not initialized."
chat_history.append((message, bot_message))
return "", chat_history
chat_history.append((message, ""))
for chunk in chat(
message,
chat_history[:-1], # Exclude the current incomplete message
transcript_processor,
cid,
rsid,
origin,
ct,
uid,
):
chat_history[-1] = (message, chunk)
yield "", chat_history
msg.submit(
respond,
[
msg,
chatbot,
transcript_processor_state,
call_id_state,
colab_id_state,
origin_state,
ct_state,
uid_state,
],
[msg, chatbot],
)
# Handle initial loading with streaming
def on_app_load(request: gr.Request):
turls = None
cid = request.query_params.get("cid", None)
rsid = request.query_params.get("rsid", None)
origin = request.query_params.get("origin", None)
ct = request.query_params.get("ct", None)
turl = request.query_params.get("turl", None)
uid = request.query_params.get("uid", None)
pnames = request.query_params.get("pnames", None)
required_params = ["cid", "rsid", "origin", "ct", "turl", "uid"]
missing_params = [
param
for param in required_params
if request.query_params.get(param) is None
]
print("Missing Params", missing_params)
if missing_params:
error_message = (
f"Missing required parameters: {', '.join(missing_params)}"
)
chatbot_value = [(None, error_message)]
return [chatbot_value, None, None, None, None, None, None, None]
if ct == "rp":
# split turls based on ,
turls = turl.split(",")
pnames = [pname.replace("_", " ") for pname in pnames.split(",")]
print(pnames)
# try:
if turls:
transcript_data = []
for turl in turls:
print("Getting Transcript for URL")
transcript_data.append(get_transcript_for_url(turl))
print("Now creating Processor")
transcript_processor = TranscriptProcessor(
transcript_data=transcript_data,
call_type=ct,
person_names=pnames,
)
else:
transcript_data = get_transcript_for_url(turl)
transcript_processor = TranscriptProcessor(
transcript_data=transcript_data, call_type=ct
)
# Initialize with empty message
chatbot_value = [(None, "")]
# Return initial values with the transcript processor
return [
chatbot_value,
transcript_processor,
cid,
rsid,
origin,
ct,
turl,
uid,
]
# except Exception as e:
# print(e)
# error_message = f"Error processing call_id {cid}: {str(e)}"
# chatbot_value = [(None, error_message)]
# return [chatbot_value, None, None, None, None, None, None, None]
def display_processing_message(chatbot_value):
"""Display the processing message while maintaining state."""
# Create new chatbot value with processing message
new_chatbot_value = [
(None, "Video is being processed. Please wait for the results...")
]
# Return all states to maintain them
return new_chatbot_value
def stream_initial_analysis(
chatbot_value, transcript_processor, cid, rsid, origin, ct, uid
):
if not transcript_processor:
return chatbot_value
try:
for chunk in get_initial_analysis(
transcript_processor, cid, rsid, origin, ct, uid
):
# Update the existing message instead of creating a new one
chatbot_value[0] = (None, chunk)
yield chatbot_value
except Exception as e:
chatbot_value[0] = (None, f"Error during analysis: {str(e)}")
yield chatbot_value
demo.load(
on_app_load,
inputs=None,
outputs=[
chatbot,
transcript_processor_state,
call_id_state,
colab_id_state,
origin_state,
ct_state,
turl_state,
uid_state,
],
).then(
display_processing_message,
inputs=[chatbot],
outputs=[chatbot],
).then(
stream_initial_analysis,
inputs=[
chatbot,
transcript_processor_state,
call_id_state,
colab_id_state,
origin_state,
ct_state,
uid_state,
],
outputs=[chatbot],
)
return demo
def main():
"""Main function to run the application."""
try:
setup_openai_key()
demo = create_chat_interface()
demo.launch(share=True)
except Exception as e:
print(f"Error starting application: {str(e)}")
raise
if __name__ == "__main__":
main()
|