Spaces:
Sleeping
Sleeping
File size: 4,530 Bytes
f318440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import tensorflow as tf
from keras import backend as K
import numpy as np
import scipy
import os
import cv2 as cv
def bright_mae(y_true, y_pred):
return K.mean(K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3]))
def bright_mse(y_true, y_pred):
return K.mean((y_pred[:,:,:,:3] - y_true[:,:,:,:3])**2)
def bright_AB(y_true, y_pred):
return K.abs(K.mean(y_true[:,:,:,:3])-K.mean(y_pred[:,:,:,:3]))
def log10(x):
numerator = K.log(x)
denominator = K.log(K.constant(10, dtype=numerator.dtype))
return numerator / denominator
def bright_psnr(y_true, y_pred):
mse = K.mean((K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) ** 2)
max_num = 1.0
psnr = 10 * log10(max_num ** 2 / mse)
return psnr
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5):
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1*L)**2
C2 = (K2*L)**2
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID')
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID')
mu1_sq = mu1*mu1
mu2_sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq
sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2
if cs_map:
value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2)),
(2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2))
else:
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
mssim = []
mcs = []
for l in range(level):
ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
mssim.append(tf.reduce_mean(ssim_map))
mcs.append(tf.reduce_mean(cs_map))
filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME')
filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME')
img1 = filtered_im1
img2 = filtered_im2
# list to tensor of dim D+1
mssim = tf.stack(mssim, axis=0)
mcs = tf.stack(mcs, axis=0)
value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])*
(mssim[level-1]**weight[level-1]))
if mean_metric:
value = tf.reduce_mean(value)
return value
def bright_SSIM(y_true, y_pred):
SSIM_loss = tf_ssim(tf.expand_dims(y_pred[:,:,:,0], -1), tf.expand_dims(y_true[:,:,:,0], -1))+tf_ssim(tf.expand_dims(y_pred[:,:,:,1], -1), tf.expand_dims(y_true[:,:,:,1], -1)) + tf_ssim(tf.expand_dims(y_pred[:,:,:,2], -1), tf.expand_dims(y_true[:,:,:,2], -1))
return SSIM_loss/3
def psnr_cau(y_true, y_pred):
mse = np.mean((np.abs(y_pred - y_true)) ** 2)
max_num = 1.0
psnr = 10 * np.log10(max_num ** 2 / mse)
return psnr
def save_model(model, name, epoch, batch_i):
modelname = './Res_models/' + str(epoch) + '_' + str(batch_i) + name + '.h5'
model.save_weights(modelname)
def imread_color(path):
img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255.
b, g, r = cv.split(img)
img_rgb = cv.merge([r, g, b])
return img_rgb
# return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255.
def imwrite(path, img):
r, g, b = cv.split(img*255)
img_rgb = cv.merge([b, g, r])
cv.imwrite(path, img_rgb)
# scipy.misc.toimage(img * 255, high=255, low=0, cmin=0, cmax=255).save(path)
def range_scale(x):
return x * 2 - 1. |