File size: 6,455 Bytes
e4136ce
 
 
 
 
 
 
 
 
 
 
 
 
5263115
 
e4136ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5263115
 
 
 
 
817b5d9
5263115
 
 
 
 
e4136ce
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import os

import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm

from lib import dataset
from lib import nets
from lib import spec_utils
from lib import utils
import io
from pydub import AudioSegment

class Separator(object):

    def __init__(self, model, device, batchsize, cropsize, postprocess=False):
        self.model = model
        self.offset = model.offset
        self.device = device
        self.batchsize = batchsize
        self.cropsize = cropsize
        self.postprocess = postprocess

    def _separate(self, X_mag_pad, roi_size):
        X_dataset = []
        patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size
        for i in range(patches):
            start = i * roi_size
            X_mag_crop = X_mag_pad[:, :, start:start + self.cropsize]
            X_dataset.append(X_mag_crop)

        X_dataset = np.asarray(X_dataset)

        self.model.eval()
        with torch.no_grad():
            mask = []
            # To reduce the overhead, dataloader is not used.
            for i in tqdm(range(0, patches, self.batchsize)):
                X_batch = X_dataset[i: i + self.batchsize]
                X_batch = torch.from_numpy(X_batch).to(self.device)

                pred = self.model.predict_mask(X_batch)

                pred = pred.detach().cpu().numpy()
                pred = np.concatenate(pred, axis=2)
                mask.append(pred)

            mask = np.concatenate(mask, axis=2)

        return mask

    def _preprocess(self, X_spec):
        X_mag = np.abs(X_spec)
        X_phase = np.angle(X_spec)

        return X_mag, X_phase

    def _postprocess(self, mask, X_mag, X_phase):
        if self.postprocess:
            mask = spec_utils.merge_artifacts(mask)

        y_spec = mask * X_mag * np.exp(1.j * X_phase)
        v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)

        return y_spec, v_spec

    def separate(self, X_spec):
        X_mag, X_phase = self._preprocess(X_spec)

        n_frame = X_mag.shape[2]
        pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.cropsize, self.offset)
        X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
        X_mag_pad /= X_mag_pad.max()

        mask = self._separate(X_mag_pad, roi_size)
        mask = mask[:, :, :n_frame]

        y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)

        return y_spec, v_spec

    def separate_tta(self, X_spec):
        X_mag, X_phase = self._preprocess(X_spec)

        n_frame = X_mag.shape[2]
        pad_l, pad_r, roi_size = dataset.make_padding(n_frame, self.cropsize, self.offset)
        X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
        X_mag_pad /= X_mag_pad.max()

        mask = self._separate(X_mag_pad, roi_size)

        pad_l += roi_size // 2
        pad_r += roi_size // 2
        X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
        X_mag_pad /= X_mag_pad.max()

        mask_tta = self._separate(X_mag_pad, roi_size)
        mask_tta = mask_tta[:, :, roi_size // 2:]
        mask = (mask[:, :, :n_frame] + mask_tta[:, :, :n_frame]) * 0.5

        y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)

        return y_spec, v_spec


def main():
    p = argparse.ArgumentParser()
    p.add_argument('--gpu', '-g', type=int, default=-1)
    p.add_argument('--pretrained_model', '-P', type=str, default='models/baseline.pth')
    p.add_argument('--input', '-i', required=True)
    p.add_argument('--sr', '-r', type=int, default=44100)
    p.add_argument('--n_fft', '-f', type=int, default=2048)
    p.add_argument('--hop_length', '-H', type=int, default=1024)
    p.add_argument('--batchsize', '-B', type=int, default=4)
    p.add_argument('--cropsize', '-c', type=int, default=256)
    p.add_argument('--output_image', '-I', action='store_true')
    p.add_argument('--postprocess', '-p', action='store_true')
    p.add_argument('--tta', '-t', action='store_true')
    p.add_argument('--output_dir', '-o', type=str, default="")
    args = p.parse_args()

    print('loading model...', end=' ')
    device = torch.device('cpu')
    model = nets.CascadedNet(args.n_fft, 32, 128)
    model.load_state_dict(torch.load(args.pretrained_model, map_location=device))
    if torch.cuda.is_available() and args.gpu >= 0:
        device = torch.device('cuda:{}'.format(args.gpu))
        model.to(device)
    print('done')

    print('loading wave source...', end=' ')
    X, sr = librosa.load(
        args.input, args.sr, False, dtype=np.float32, res_type='kaiser_fast')
    basename = os.path.splitext(os.path.basename(args.input))[0]
    print('done')

    if X.ndim == 1:
        # mono to stereo
        X = np.asarray([X, X])

    print('stft of wave source...', end=' ')
    X_spec = spec_utils.wave_to_spectrogram(X, args.hop_length, args.n_fft)
    print('done')

    sp = Separator(model, device, args.batchsize, args.cropsize, args.postprocess)

    if args.tta:
        y_spec, v_spec = sp.separate_tta(X_spec)
    else:
        y_spec, v_spec = sp.separate(X_spec)

    print('validating output directory...', end=' ')
    output_dir = args.output_dir
    if output_dir != "":  # modifies output_dir if theres an arg specified
        output_dir = output_dir.rstrip('/') + '/'
        os.makedirs(output_dir, exist_ok=True)
    print('done')

    print('inverse stft of instruments...', end=' ')
    wave = spec_utils.spectrogram_to_wave(y_spec, hop_length=args.hop_length)
    print('done')
    # sf.write('{}{}_Instruments.wav'.format(output_dir, basename), wave.T, sr)
    #sf.write('{}Instruments.wav'.format(output_dir), wave.T, sr)
    wav_io = io.BytesIO()
    sf.write(wav_io, wave.T, sr,format='WAV')
    wav_io.seek(0)
    song=AudioSegment.from_wav(wav_io)
    song.export('{}Instruments.mp3'.format(output_dir),format='mp3')
    
    #print('inverse stft of vocals...', end=' ')
    #wave = spec_utils.spectrogram_to_wave(v_spec, hop_length=args.hop_length)
    #print('done')
    #sf.write('{}{}_Vocals.wav'.format(output_dir, basename), wave.T, sr)

    if args.output_image:
        image = spec_utils.spectrogram_to_image(y_spec)
        utils.imwrite('{}{}_Instruments.jpg'.format(output_dir, basename), image)

        image = spec_utils.spectrogram_to_image(v_spec)
        utils.imwrite('{}{}_Vocals.jpg'.format(output_dir, basename), image)


if __name__ == '__main__':
    main()