File size: 6,725 Bytes
242f627
 
 
1a1d05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242f627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1d05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f6bc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1d05a
 
e0f6bc4
 
 
 
1a1d05a
 
 
 
 
 
 
 
 
 
e0f6bc4
 
1a1d05a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f6bc4
 
 
1a1d05a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import cv2

import numpy as np
import supervision as sv


class Visualizer:

    def __init__(
        self,
        line_thickness: int = 2,
        mask_opacity: float = 0.1,
        text_scale: float = 0.5
    ) -> None:
        self.box_annotator = sv.BoundingBoxAnnotator(
            color_lookup=sv.ColorLookup.INDEX,
            thickness=line_thickness)
        self.mask_annotator = sv.MaskAnnotator(
            color_lookup=sv.ColorLookup.INDEX,
            opacity=mask_opacity)
        self.polygon_annotator = sv.PolygonAnnotator(
            color_lookup=sv.ColorLookup.INDEX,
            thickness=line_thickness)
        self.label_annotator = sv.LabelAnnotator(
            color_lookup=sv.ColorLookup.INDEX,
            text_position=sv.Position.CENTER_OF_MASS,
            text_scale=text_scale)

    def visualize(
        self,
        image: np.ndarray,
        detections: sv.Detections,
        with_box: bool,
        with_mask: bool,
        with_polygon: bool,
        with_label: bool
    ) -> np.ndarray:
        annotated_image = image.copy()
        if with_box:
            annotated_image = self.box_annotator.annotate(
                scene=annotated_image, detections=detections)
        if with_mask:
            annotated_image = self.mask_annotator.annotate(
                scene=annotated_image, detections=detections)
        if with_polygon:
            annotated_image = self.polygon_annotator.annotate(
                scene=annotated_image, detections=detections)
        if with_label:
            labels = list(map(str, range(len(detections))))
            annotated_image = self.label_annotator.annotate(
                scene=annotated_image, detections=detections, labels=labels)
        return annotated_image


def refine_mask(
    mask: np.ndarray,
    area_threshold: float,
    mode: str = 'islands'
) -> np.ndarray:
    """
    Refines a mask by removing small islands or filling small holes based on area
    threshold.

    Parameters:
        mask (np.ndarray): Input binary mask.
        area_threshold (float): Threshold for relative area to remove or fill features.
        mode (str): Operation mode ('islands' for removing islands, 'holes' for filling
                    holes).

    Returns:
        np.ndarray: Refined binary mask.
    """
    mask = np.uint8(mask * 255)
    operation = cv2.RETR_EXTERNAL if mode == 'islands' else cv2.RETR_CCOMP
    contours, _ = cv2.findContours(
        mask, operation, cv2.CHAIN_APPROX_SIMPLE
    )
    total_area = cv2.countNonZero(mask) if mode == 'islands' else mask.size

    for contour in contours:
        area = cv2.contourArea(contour)
        relative_area = area / total_area
        if relative_area < area_threshold:
            cv2.drawContours(
                mask, [contour], -1, (0 if mode == 'islands' else 255), -1
            )

    return np.where(mask > 0, 1, 0).astype(bool)


def filter_masks_by_relative_area(
    masks: np.ndarray,
    min_relative_area: float = 0.02,
    max_relative_area: float = 1.0
) -> np.ndarray:
    """
    Filters out masks based on their relative area.

    Parameters:
        masks (np.ndarray): A 3D numpy array where each slice along the third dimension
            represents a mask.
        min_relative_area (float): Minimum relative area threshold for keeping a mask.
        max_relative_area (float): Maximum relative area threshold for keeping a mask.

    Returns:
        np.ndarray: A 3D numpy array of filtered masks.
    """
    mask_areas = masks.sum(axis=(1, 2))
    total_area = masks.shape[1] * masks.shape[2]
    relative_areas = mask_areas / total_area
    min_area_filter = relative_areas >= min_relative_area
    max_area_filter = relative_areas <= max_relative_area
    return masks[min_area_filter & max_area_filter]


def compute_iou(mask1: np.ndarray, mask2: np.ndarray) -> float:
    """
    Computes the Intersection over Union (IoU) of two masks.

    Parameters:
        mask1, mask2 (np.ndarray): Two mask arrays.

    Returns:
        float: The IoU of the two masks.
    """
    intersection = np.logical_and(mask1, mask2).sum()
    union = np.logical_or(mask1, mask2).sum()
    return intersection / union if union != 0 else 0


def filter_highly_overlapping_masks(
    masks: np.ndarray,
    iou_threshold: float
) -> np.ndarray:
    """
    Removes masks with high overlap from a set of masks.

    Parameters:
        masks (np.ndarray): A 3D numpy array with shape (N, H, W), where N is the
            number of masks, and H and W are the height and width of the masks.
        iou_threshold (float): The IoU threshold above which masks will be considered as
            overlapping.

    Returns:
        np.ndarray: A 3D numpy array of masks with highly overlapping masks removed.
    """
    num_masks = masks.shape[0]
    keep_mask = np.ones(num_masks, dtype=bool)

    for i in range(num_masks):
        for j in range(i + 1, num_masks):
            if not keep_mask[i] or not keep_mask[j]:
                continue

            iou = compute_iou(masks[i, :, :], masks[j, :, :])
            if iou > iou_threshold:
                keep_mask[j] = False

    return masks[keep_mask]


def postprocess_masks(
    detections: sv.Detections,
    area_threshold: float = 0.01,
    min_relative_area: float = 0.01,
    max_relative_area: float = 1.0,
    iou_threshold: float = 0.9
) -> sv.Detections:
    """
    Post-processes the masks of detection objects by removing small islands and filling
    small holes.

    Parameters:
        detections (sv.Detections): Detection objects to be filtered.
        area_threshold (float): Threshold for relative area to remove or fill features.
        min_relative_area (float): Minimum relative area threshold for detections.
        max_relative_area (float): Maximum relative area threshold for detections.
        iou_threshold (float): The IoU threshold above which masks will be considered as
            overlapping.

    Returns:
        np.ndarray: Post-processed masks.
    """
    masks = detections.mask.copy()
    for i in range(len(masks)):
        masks[i] = refine_mask(
            mask=masks[i],
            area_threshold=area_threshold,
            mode='islands'
        )
        masks[i] = refine_mask(
            mask=masks[i],
            area_threshold=area_threshold,
            mode='holes'
        )
    masks = filter_masks_by_relative_area(
        masks=masks,
        min_relative_area=min_relative_area,
        max_relative_area=max_relative_area)
    masks = filter_highly_overlapping_masks(
        masks=masks,
        iou_threshold=iou_threshold)

    return sv.Detections(
        xyxy=sv.mask_to_xyxy(masks),
        mask=masks
    )