File size: 18,085 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/vision_transformer.py."""

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from annotator.uniformer.mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer,
                      constant_init, kaiming_init, normal_init)
from annotator.uniformer.mmcv.runner import _load_checkpoint
from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm

from annotator.uniformer.mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import DropPath, trunc_normal_


class Mlp(nn.Module):
    """MLP layer for Encoder block.

    Args:
        in_features(int): Input dimension for the first fully
            connected layer.
        hidden_features(int): Output dimension for the first fully
            connected layer.
        out_features(int): Output dementsion for the second fully
            connected layer.
        act_cfg(dict): Config dict for activation layer.
            Default: dict(type='GELU').
        drop(float): Drop rate for the dropout layer. Dropout rate has
            to be between 0 and 1. Default: 0.
    """

    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_cfg=dict(type='GELU'),
                 drop=0.):
        super(Mlp, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = Linear(in_features, hidden_features)
        self.act = build_activation_layer(act_cfg)
        self.fc2 = Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    """Attention layer for Encoder block.

    Args:
        dim (int): Dimension for the input vector.
        num_heads (int): Number of parallel attention heads.
        qkv_bias (bool): Enable bias for qkv if True. Default: False.
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
        attn_drop (float): Drop rate for attention output weights.
            Default: 0.
        proj_drop (float): Drop rate for output weights. Default: 0.
    """

    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        b, n, c = x.shape
        qkv = self.qkv(x).reshape(b, n, 3, self.num_heads,
                                  c // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(b, n, c)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    """Implements encoder block with residual connection.

    Args:
        dim (int): The feature dimension.
        num_heads (int): Number of parallel attention heads.
        mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
        drop (float): Drop rate for mlp output weights. Default: 0.
        attn_drop (float): Drop rate for attention output weights.
            Default: 0.
        proj_drop (float): Drop rate for attn layer output weights.
            Default: 0.
        drop_path (float): Drop rate for paths of model.
            Default: 0.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN', requires_grad=True).
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    """

    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 proj_drop=0.,
                 drop_path=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN', eps=1e-6),
                 with_cp=False):
        super(Block, self).__init__()
        self.with_cp = with_cp
        _, self.norm1 = build_norm_layer(norm_cfg, dim)
        self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop,
                              proj_drop)
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()
        _, self.norm2 = build_norm_layer(norm_cfg, dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_cfg=act_cfg,
            drop=drop)

    def forward(self, x):

        def _inner_forward(x):
            out = x + self.drop_path(self.attn(self.norm1(x)))
            out = out + self.drop_path(self.mlp(self.norm2(out)))
            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        return out


class PatchEmbed(nn.Module):
    """Image to Patch Embedding.

    Args:
        img_size (int | tuple): Input image size.
            default: 224.
        patch_size (int): Width and height for a patch.
            default: 16.
        in_channels (int): Input channels for images. Default: 3.
        embed_dim (int): The embedding dimension. Default: 768.
    """

    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_channels=3,
                 embed_dim=768):
        super(PatchEmbed, self).__init__()
        if isinstance(img_size, int):
            self.img_size = (img_size, img_size)
        elif isinstance(img_size, tuple):
            self.img_size = img_size
        else:
            raise TypeError('img_size must be type of int or tuple')
        h, w = self.img_size
        self.patch_size = (patch_size, patch_size)
        self.num_patches = (h // patch_size) * (w // patch_size)
        self.proj = Conv2d(
            in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        return self.proj(x).flatten(2).transpose(1, 2)


@BACKBONES.register_module()
class VisionTransformer(nn.Module):
    """Vision transformer backbone.

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for
        Image Recognition at Scale` - https://arxiv.org/abs/2010.11929

    Args:
        img_size (tuple): input image size. Default: (224, 224).
        patch_size (int, tuple): patch size. Default: 16.
        in_channels (int): number of input channels. Default: 3.
        embed_dim (int): embedding dimension. Default: 768.
        depth (int): depth of transformer. Default: 12.
        num_heads (int): number of attention heads. Default: 12.
        mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
            Default: 4.
        out_indices (list | tuple | int): Output from which stages.
            Default: -1.
        qkv_bias (bool): enable bias for qkv if True. Default: True.
        qk_scale (float): override default qk scale of head_dim ** -0.5 if set.
        drop_rate (float): dropout rate. Default: 0.
        attn_drop_rate (float): attention dropout rate. Default: 0.
        drop_path_rate (float): Rate of DropPath. Default: 0.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN', eps=1e-6, requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='GELU').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        final_norm (bool):  Whether to add a additional layer to normalize
            final feature map. Default: False.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Default: bicubic.
        with_cls_token (bool): If concatenating class token into image tokens
            as transformer input. Default: True.
        with_cp (bool): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
    """

    def __init__(self,
                 img_size=(224, 224),
                 patch_size=16,
                 in_channels=3,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4,
                 out_indices=11,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True),
                 act_cfg=dict(type='GELU'),
                 norm_eval=False,
                 final_norm=False,
                 with_cls_token=True,
                 interpolate_mode='bicubic',
                 with_cp=False):
        super(VisionTransformer, self).__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.features = self.embed_dim = embed_dim
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=embed_dim)

        self.with_cls_token = with_cls_token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        self.pos_embed = nn.Parameter(
            torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        if isinstance(out_indices, int):
            self.out_indices = [out_indices]
        elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
            self.out_indices = out_indices
        else:
            raise TypeError('out_indices must be type of int, list or tuple')

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
               ]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=dpr[i],
                attn_drop=attn_drop_rate,
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                with_cp=with_cp) for i in range(depth)
        ])

        self.interpolate_mode = interpolate_mode
        self.final_norm = final_norm
        if final_norm:
            _, self.norm = build_norm_layer(norm_cfg, embed_dim)

        self.norm_eval = norm_eval
        self.with_cp = with_cp

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = get_root_logger()
            checkpoint = _load_checkpoint(pretrained, logger=logger)
            if 'state_dict' in checkpoint:
                state_dict = checkpoint['state_dict']
            else:
                state_dict = checkpoint

            if 'pos_embed' in state_dict.keys():
                if self.pos_embed.shape != state_dict['pos_embed'].shape:
                    logger.info(msg=f'Resize the pos_embed shape from \
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}')
                    h, w = self.img_size
                    pos_size = int(
                        math.sqrt(state_dict['pos_embed'].shape[1] - 1))
                    state_dict['pos_embed'] = self.resize_pos_embed(
                        state_dict['pos_embed'], (h, w), (pos_size, pos_size),
                        self.patch_size, self.interpolate_mode)

            self.load_state_dict(state_dict, False)

        elif pretrained is None:
            # We only implement the 'jax_impl' initialization implemented at
            # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353  # noqa: E501
            trunc_normal_(self.pos_embed, std=.02)
            trunc_normal_(self.cls_token, std=.02)
            for n, m in self.named_modules():
                if isinstance(m, Linear):
                    trunc_normal_(m.weight, std=.02)
                    if m.bias is not None:
                        if 'mlp' in n:
                            normal_init(m.bias, std=1e-6)
                        else:
                            constant_init(m.bias, 0)
                elif isinstance(m, Conv2d):
                    kaiming_init(m.weight, mode='fan_in')
                    if m.bias is not None:
                        constant_init(m.bias, 0)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
                    constant_init(m.bias, 0)
                    constant_init(m.weight, 1.0)
        else:
            raise TypeError('pretrained must be a str or None')

    def _pos_embeding(self, img, patched_img, pos_embed):
        """Positiong embeding method.

        Resize the pos_embed, if the input image size doesn't match
            the training size.
        Args:
            img (torch.Tensor): The inference image tensor, the shape
                must be [B, C, H, W].
            patched_img (torch.Tensor): The patched image, it should be
                shape of [B, L1, C].
            pos_embed (torch.Tensor): The pos_embed weighs, it should be
                shape of [B, L2, c].
        Return:
            torch.Tensor: The pos encoded image feature.
        """
        assert patched_img.ndim == 3 and pos_embed.ndim == 3, \
            'the shapes of patched_img and pos_embed must be [B, L, C]'
        x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
        if x_len != pos_len:
            if pos_len == (self.img_size[0] // self.patch_size) * (
                    self.img_size[1] // self.patch_size) + 1:
                pos_h = self.img_size[0] // self.patch_size
                pos_w = self.img_size[1] // self.patch_size
            else:
                raise ValueError(
                    'Unexpected shape of pos_embed, got {}.'.format(
                        pos_embed.shape))
            pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
                                              (pos_h, pos_w), self.patch_size,
                                              self.interpolate_mode)
        return self.pos_drop(patched_img + pos_embed)

    @staticmethod
    def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
        """Resize pos_embed weights.

        Resize pos_embed using bicubic interpolate method.
        Args:
            pos_embed (torch.Tensor): pos_embed weights.
            input_shpae (tuple): Tuple for (input_h, intput_w).
            pos_shape (tuple): Tuple for (pos_h, pos_w).
            patch_size (int): Patch size.
        Return:
            torch.Tensor: The resized pos_embed of shape [B, L_new, C]
        """
        assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
        input_h, input_w = input_shpae
        pos_h, pos_w = pos_shape
        cls_token_weight = pos_embed[:, 0]
        pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
        pos_embed_weight = pos_embed_weight.reshape(
            1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
        pos_embed_weight = F.interpolate(
            pos_embed_weight,
            size=[input_h // patch_size, input_w // patch_size],
            align_corners=False,
            mode=mode)
        cls_token_weight = cls_token_weight.unsqueeze(1)
        pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
        pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
        return pos_embed

    def forward(self, inputs):
        B = inputs.shape[0]

        x = self.patch_embed(inputs)

        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self._pos_embeding(inputs, x, self.pos_embed)

        if not self.with_cls_token:
            # Remove class token for transformer input
            x = x[:, 1:]

        outs = []
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i == len(self.blocks) - 1:
                if self.final_norm:
                    x = self.norm(x)
            if i in self.out_indices:
                if self.with_cls_token:
                    # Remove class token and reshape token for decoder head
                    out = x[:, 1:]
                else:
                    out = x
                B, _, C = out.shape
                out = out.reshape(B, inputs.shape[2] // self.patch_size,
                                  inputs.shape[3] // self.patch_size,
                                  C).permute(0, 3, 1, 2)
                outs.append(out)

        return tuple(outs)

    def train(self, mode=True):
        super(VisionTransformer, self).train(mode)
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, nn.LayerNorm):
                    m.eval()