File size: 21,344 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner import auto_fp16, force_fp32
from torch.nn.modules.utils import _pair

from mmdet.core import build_bbox_coder, multi_apply, multiclass_nms
from mmdet.models.builder import HEADS, build_loss
from mmdet.models.losses import accuracy


@HEADS.register_module()
class BBoxHead(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively."""

    def __init__(self,
                 with_avg_pool=False,
                 with_cls=True,
                 with_reg=True,
                 roi_feat_size=7,
                 in_channels=256,
                 num_classes=80,
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     clip_border=True,
                     target_means=[0., 0., 0., 0.],
                     target_stds=[0.1, 0.1, 0.2, 0.2]),
                 reg_class_agnostic=False,
                 reg_decoded_bbox=False,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=1.0)):
        super(BBoxHead, self).__init__()
        assert with_cls or with_reg
        self.with_avg_pool = with_avg_pool
        self.with_cls = with_cls
        self.with_reg = with_reg
        self.roi_feat_size = _pair(roi_feat_size)
        self.roi_feat_area = self.roi_feat_size[0] * self.roi_feat_size[1]
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.reg_class_agnostic = reg_class_agnostic
        self.reg_decoded_bbox = reg_decoded_bbox
        self.fp16_enabled = False

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)

        in_channels = self.in_channels
        if self.with_avg_pool:
            self.avg_pool = nn.AvgPool2d(self.roi_feat_size)
        else:
            in_channels *= self.roi_feat_area
        if self.with_cls:
            # need to add background class
            self.fc_cls = nn.Linear(in_channels, num_classes + 1)
        if self.with_reg:
            out_dim_reg = 4 if reg_class_agnostic else 4 * num_classes
            self.fc_reg = nn.Linear(in_channels, out_dim_reg)
        self.debug_imgs = None

    def init_weights(self):
        # conv layers are already initialized by ConvModule
        if self.with_cls:
            nn.init.normal_(self.fc_cls.weight, 0, 0.01)
            nn.init.constant_(self.fc_cls.bias, 0)
        if self.with_reg:
            nn.init.normal_(self.fc_reg.weight, 0, 0.001)
            nn.init.constant_(self.fc_reg.bias, 0)

    @auto_fp16()
    def forward(self, x):
        if self.with_avg_pool:
            x = self.avg_pool(x)
        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x) if self.with_cls else None
        bbox_pred = self.fc_reg(x) if self.with_reg else None
        return cls_score, bbox_pred

    def _get_target_single(self, pos_bboxes, neg_bboxes, pos_gt_bboxes,
                           pos_gt_labels, cfg):
        """Calculate the ground truth for proposals in the single image
        according to the sampling results.

        Args:
            pos_bboxes (Tensor): Contains all the positive boxes,
                has shape (num_pos, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            neg_bboxes (Tensor): Contains all the negative boxes,
                has shape (num_neg, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_bboxes (Tensor): Contains all the gt_boxes,
                has shape (num_gt, 4), the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            pos_gt_labels (Tensor): Contains all the gt_labels,
                has shape (num_gt).
            cfg (obj:`ConfigDict`): `train_cfg` of R-CNN.

        Returns:
            Tuple[Tensor]: Ground truth for proposals
            in a single image. Containing the following Tensors:

                - labels(Tensor): Gt_labels for all proposals, has
                  shape (num_proposals,).
                - label_weights(Tensor): Labels_weights for all
                  proposals, has shape (num_proposals,).
                - bbox_targets(Tensor):Regression target for all
                  proposals, has shape (num_proposals, 4), the
                  last dimension 4 represents [tl_x, tl_y, br_x, br_y].
                - bbox_weights(Tensor):Regression weights for all
                  proposals, has shape (num_proposals, 4).
        """
        num_pos = pos_bboxes.size(0)
        num_neg = neg_bboxes.size(0)
        num_samples = num_pos + num_neg

        # original implementation uses new_zeros since BG are set to be 0
        # now use empty & fill because BG cat_id = num_classes,
        # FG cat_id = [0, num_classes-1]
        labels = pos_bboxes.new_full((num_samples, ),
                                     self.num_classes,
                                     dtype=torch.long)
        label_weights = pos_bboxes.new_zeros(num_samples)
        bbox_targets = pos_bboxes.new_zeros(num_samples, 4)
        bbox_weights = pos_bboxes.new_zeros(num_samples, 4)
        if num_pos > 0:
            labels[:num_pos] = pos_gt_labels
            pos_weight = 1.0 if cfg.pos_weight <= 0 else cfg.pos_weight
            label_weights[:num_pos] = pos_weight
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    pos_bboxes, pos_gt_bboxes)
            else:
                # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
                # is applied directly on the decoded bounding boxes, both
                # the predicted boxes and regression targets should be with
                # absolute coordinate format.
                pos_bbox_targets = pos_gt_bboxes
            bbox_targets[:num_pos, :] = pos_bbox_targets
            bbox_weights[:num_pos, :] = 1
        if num_neg > 0:
            label_weights[-num_neg:] = 1.0

        return labels, label_weights, bbox_targets, bbox_weights

    def get_targets(self,
                    sampling_results,
                    gt_bboxes,
                    gt_labels,
                    rcnn_train_cfg,
                    concat=True):
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results.

        Almost the same as the implementation in bbox_head, we passed
        additional parameters pos_inds_list and neg_inds_list to
        `_get_target_single` function.

        Args:
            sampling_results (List[obj:SamplingResults]): Assign results of
                all images in a batch after sampling.
            gt_bboxes (list[Tensor]): Gt_bboxes of all images in a batch,
                each tensor has shape (num_gt, 4),  the last dimension 4
                represents [tl_x, tl_y, br_x, br_y].
            gt_labels (list[Tensor]): Gt_labels of all images in a batch,
                each tensor has shape (num_gt,).
            rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
            concat (bool): Whether to concatenate the results of all
                the images in a single batch.

        Returns:
            Tuple[Tensor]: Ground truth for proposals in a single image.
            Containing the following list of Tensors:

                - labels (list[Tensor],Tensor): Gt_labels for all
                  proposals in a batch, each tensor in list has
                  shape (num_proposals,) when `concat=False`, otherwise
                  just a single tensor has shape (num_all_proposals,).
                - label_weights (list[Tensor]): Labels_weights for
                  all proposals in a batch, each tensor in list has
                  shape (num_proposals,) when `concat=False`, otherwise
                  just a single tensor has shape (num_all_proposals,).
                - bbox_targets (list[Tensor],Tensor): Regression target
                  for all proposals in a batch, each tensor in list
                  has shape (num_proposals, 4) when `concat=False`,
                  otherwise just a single tensor has shape
                  (num_all_proposals, 4), the last dimension 4 represents
                  [tl_x, tl_y, br_x, br_y].
                - bbox_weights (list[tensor],Tensor): Regression weights for
                  all proposals in a batch, each tensor in list has shape
                  (num_proposals, 4) when `concat=False`, otherwise just a
                  single tensor has shape (num_all_proposals, 4).
        """
        pos_bboxes_list = [res.pos_bboxes for res in sampling_results]
        neg_bboxes_list = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes_list = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels_list = [res.pos_gt_labels for res in sampling_results]
        labels, label_weights, bbox_targets, bbox_weights = multi_apply(
            self._get_target_single,
            pos_bboxes_list,
            neg_bboxes_list,
            pos_gt_bboxes_list,
            pos_gt_labels_list,
            cfg=rcnn_train_cfg)

        if concat:
            labels = torch.cat(labels, 0)
            label_weights = torch.cat(label_weights, 0)
            bbox_targets = torch.cat(bbox_targets, 0)
            bbox_weights = torch.cat(bbox_weights, 0)
        return labels, label_weights, bbox_targets, bbox_weights

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets,
             bbox_weights,
             reduction_override=None):
        losses = dict()
        if cls_score is not None:
            avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
            if cls_score.numel() > 0:
                losses['loss_cls'] = self.loss_cls(
                    cls_score,
                    labels,
                    label_weights,
                    avg_factor=avg_factor,
                    reduction_override=reduction_override)
                losses['acc'] = accuracy(cls_score, labels)
        if bbox_pred is not None:
            bg_class_ind = self.num_classes
            # 0~self.num_classes-1 are FG, self.num_classes is BG
            pos_inds = (labels >= 0) & (labels < bg_class_ind)
            # do not perform bounding box regression for BG anymore.
            if pos_inds.any():
                if self.reg_decoded_bbox:
                    # When the regression loss (e.g. `IouLoss`,
                    # `GIouLoss`, `DIouLoss`) is applied directly on
                    # the decoded bounding boxes, it decodes the
                    # already encoded coordinates to absolute format.
                    bbox_pred = self.bbox_coder.decode(rois[:, 1:], bbox_pred)
                if self.reg_class_agnostic:
                    pos_bbox_pred = bbox_pred.view(
                        bbox_pred.size(0), 4)[pos_inds.type(torch.bool)]
                else:
                    pos_bbox_pred = bbox_pred.view(
                        bbox_pred.size(0), -1,
                        4)[pos_inds.type(torch.bool),
                           labels[pos_inds.type(torch.bool)]]
                losses['loss_bbox'] = self.loss_bbox(
                    pos_bbox_pred,
                    bbox_targets[pos_inds.type(torch.bool)],
                    bbox_weights[pos_inds.type(torch.bool)],
                    avg_factor=bbox_targets.size(0),
                    reduction_override=reduction_override)
            else:
                losses['loss_bbox'] = bbox_pred[pos_inds].sum()
        return losses

    @force_fp32(apply_to=('cls_score', 'bbox_pred'))
    def get_bboxes(self,
                   rois,
                   cls_score,
                   bbox_pred,
                   img_shape,
                   scale_factor,
                   rescale=False,
                   cfg=None):
        """Transform network output for a batch into bbox predictions.

        If the input rois has batch dimension, the function would be in
        `batch_mode` and return is a tuple[list[Tensor], list[Tensor]],
        otherwise, the return is a tuple[Tensor, Tensor].

        Args:
            rois (Tensor): Boxes to be transformed. Has shape (num_boxes, 5)
               or (B, num_boxes, 5)
            cls_score (list[Tensor] or Tensor): Box scores for
               each scale level, each is a 4D-tensor, the channel number is
               num_points * num_classes.
            bbox_pred (Tensor, optional): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_classes * 4.
            img_shape (Sequence[int] or torch.Tensor or Sequence[
                Sequence[int]], optional): Maximum bounds for boxes, specifies
                (H, W, C) or (H, W). If rois shape is (B, num_boxes, 4), then
                the max_shape should be a Sequence[Sequence[int]]
                and the length of max_shape should also be B.
            scale_factor (tuple[ndarray] or ndarray): Scale factor of the
               image arange as (w_scale, h_scale, w_scale, h_scale). In
               `batch_mode`, the scale_factor shape is tuple[ndarray].
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. Default: None

        Returns:
            tuple[list[Tensor], list[Tensor]] or tuple[Tensor, Tensor]:
                If the input has a batch dimension, the return value is
                a tuple of the list. The first list contains the boxes of
                the corresponding image in a batch, each tensor has the
                shape (num_boxes, 5) and last dimension 5 represent
                (tl_x, tl_y, br_x, br_y, score). Each Tensor in the second
                list is the labels with shape (num_boxes, ). The length of
                both lists should be equal to batch_size. Otherwise return
                value is a tuple of two tensors, the first tensor is the
                boxes with scores, the second tensor is the labels, both
                have the same shape as the first case.
        """
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))

        scores = F.softmax(
            cls_score, dim=-1) if cls_score is not None else None

        batch_mode = True
        if rois.ndim == 2:
            # e.g. AugTest, Cascade R-CNN, HTC, SCNet...
            batch_mode = False

            # add batch dimension
            if scores is not None:
                scores = scores.unsqueeze(0)
            if bbox_pred is not None:
                bbox_pred = bbox_pred.unsqueeze(0)
            rois = rois.unsqueeze(0)

        if bbox_pred is not None:
            bboxes = self.bbox_coder.decode(
                rois[..., 1:], bbox_pred, max_shape=img_shape)
        else:
            bboxes = rois[..., 1:].clone()
            if img_shape is not None:
                max_shape = bboxes.new_tensor(img_shape)[..., :2]
                min_xy = bboxes.new_tensor(0)
                max_xy = torch.cat(
                    [max_shape] * 2, dim=-1).flip(-1).unsqueeze(-2)
                bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
                bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)

        if rescale and bboxes.size(-2) > 0:
            if not isinstance(scale_factor, tuple):
                scale_factor = tuple([scale_factor])
            # B, 1, bboxes.size(-1)
            scale_factor = bboxes.new_tensor(scale_factor).unsqueeze(1).repeat(
                1, 1,
                bboxes.size(-1) // 4)
            bboxes /= scale_factor

        det_bboxes = []
        det_labels = []
        for (bbox, score) in zip(bboxes, scores):
            if cfg is not None:
                det_bbox, det_label = multiclass_nms(bbox, score,
                                                     cfg.score_thr, cfg.nms,
                                                     cfg.max_per_img)
            else:
                det_bbox, det_label = bbox, score
            det_bboxes.append(det_bbox)
            det_labels.append(det_label)

        if not batch_mode:
            det_bboxes = det_bboxes[0]
            det_labels = det_labels[0]
        return det_bboxes, det_labels

    @force_fp32(apply_to=('bbox_preds', ))
    def refine_bboxes(self, rois, labels, bbox_preds, pos_is_gts, img_metas):
        """Refine bboxes during training.

        Args:
            rois (Tensor): Shape (n*bs, 5), where n is image number per GPU,
                and bs is the sampled RoIs per image. The first column is
                the image id and the next 4 columns are x1, y1, x2, y2.
            labels (Tensor): Shape (n*bs, ).
            bbox_preds (Tensor): Shape (n*bs, 4) or (n*bs, 4*#class).
            pos_is_gts (list[Tensor]): Flags indicating if each positive bbox
                is a gt bbox.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Refined bboxes of each image in a mini-batch.

        Example:
            >>> # xdoctest: +REQUIRES(module:kwarray)
            >>> import kwarray
            >>> import numpy as np
            >>> from mmdet.core.bbox.demodata import random_boxes
            >>> self = BBoxHead(reg_class_agnostic=True)
            >>> n_roi = 2
            >>> n_img = 4
            >>> scale = 512
            >>> rng = np.random.RandomState(0)
            >>> img_metas = [{'img_shape': (scale, scale)}
            ...              for _ in range(n_img)]
            >>> # Create rois in the expected format
            >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)
            >>> img_ids = torch.randint(0, n_img, (n_roi,))
            >>> img_ids = img_ids.float()
            >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1)
            >>> # Create other args
            >>> labels = torch.randint(0, 2, (n_roi,)).long()
            >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)
            >>> # For each image, pretend random positive boxes are gts
            >>> is_label_pos = (labels.numpy() > 0).astype(np.int)
            >>> lbl_per_img = kwarray.group_items(is_label_pos,
            ...                                   img_ids.numpy())
            >>> pos_per_img = [sum(lbl_per_img.get(gid, []))
            ...                for gid in range(n_img)]
            >>> pos_is_gts = [
            >>>     torch.randint(0, 2, (npos,)).byte().sort(
            >>>         descending=True)[0]
            >>>     for npos in pos_per_img
            >>> ]
            >>> bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,
            >>>                    pos_is_gts, img_metas)
            >>> print(bboxes_list)
        """
        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() <= len(img_metas)

        bboxes_list = []
        for i in range(len(img_metas)):
            inds = torch.nonzero(
                rois[:, 0] == i, as_tuple=False).squeeze(dim=1)
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            bbox_pred_ = bbox_preds[inds]
            img_meta_ = img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)

            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep

            bboxes_list.append(bboxes[keep_inds.type(torch.bool)])

        return bboxes_list

    @force_fp32(apply_to=('bbox_pred', ))
    def regress_by_class(self, rois, label, bbox_pred, img_meta):
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): shape (n, 4) or (n, 5)
            label (Tensor): shape (n, )
            bbox_pred (Tensor): shape (n, 4*(#class)) or (n, 4)
            img_meta (dict): Image meta info.

        Returns:
            Tensor: Regressed bboxes, the same shape as input rois.
        """
        assert rois.size(1) == 4 or rois.size(1) == 5, repr(rois.shape)

        if not self.reg_class_agnostic:
            label = label * 4
            inds = torch.stack((label, label + 1, label + 2, label + 3), 1)
            bbox_pred = torch.gather(bbox_pred, 1, inds)
        assert bbox_pred.size(1) == 4

        if rois.size(1) == 4:
            new_rois = self.bbox_coder.decode(
                rois, bbox_pred, max_shape=img_meta['img_shape'])
        else:
            bboxes = self.bbox_coder.decode(
                rois[:, 1:], bbox_pred, max_shape=img_meta['img_shape'])
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois