File size: 24,983 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Copyright (c) 2019 Western Digital Corporation or its affiliates.

import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, normal_init
from mmcv.runner import force_fp32

from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, images_to_levels,
                        multi_apply, multiclass_nms)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


@HEADS.register_module()
class YOLOV3Head(BaseDenseHead, BBoxTestMixin):
    """YOLOV3Head Paper link: https://arxiv.org/abs/1804.02767.

    Args:
        num_classes (int): The number of object classes (w/o background)
        in_channels (List[int]): Number of input channels per scale.
        out_channels (List[int]): The number of output channels per scale
            before the final 1x1 layer. Default: (1024, 512, 256).
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        featmap_strides (List[int]): The stride of each scale.
            Should be in descending order. Default: (32, 16, 8).
        one_hot_smoother (float): Set a non-zero value to enable label-smooth
            Default: 0.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
        loss_cls (dict): Config of classification loss.
        loss_conf (dict): Config of confidence loss.
        loss_xy (dict): Config of xy coordinate loss.
        loss_wh (dict): Config of wh coordinate loss.
        train_cfg (dict): Training config of YOLOV3 head. Default: None.
        test_cfg (dict): Testing config of YOLOV3 head. Default: None.
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 out_channels=(1024, 512, 256),
                 anchor_generator=dict(
                     type='YOLOAnchorGenerator',
                     base_sizes=[[(116, 90), (156, 198), (373, 326)],
                                 [(30, 61), (62, 45), (59, 119)],
                                 [(10, 13), (16, 30), (33, 23)]],
                     strides=[32, 16, 8]),
                 bbox_coder=dict(type='YOLOBBoxCoder'),
                 featmap_strides=[32, 16, 8],
                 one_hot_smoother=0.,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_conf=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_xy=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_wh=dict(type='MSELoss', loss_weight=1.0),
                 train_cfg=None,
                 test_cfg=None):
        super(YOLOV3Head, self).__init__()
        # Check params
        assert (len(in_channels) == len(out_channels) == len(featmap_strides))

        self.num_classes = num_classes
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.featmap_strides = featmap_strides
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            if hasattr(self.train_cfg, 'sampler'):
                sampler_cfg = self.train_cfg.sampler
            else:
                sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)

        self.one_hot_smoother = one_hot_smoother

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.anchor_generator = build_anchor_generator(anchor_generator)

        self.loss_cls = build_loss(loss_cls)
        self.loss_conf = build_loss(loss_conf)
        self.loss_xy = build_loss(loss_xy)
        self.loss_wh = build_loss(loss_wh)
        # usually the numbers of anchors for each level are the same
        # except SSD detectors
        self.num_anchors = self.anchor_generator.num_base_anchors[0]
        assert len(
            self.anchor_generator.num_base_anchors) == len(featmap_strides)
        self._init_layers()

    @property
    def num_levels(self):
        return len(self.featmap_strides)

    @property
    def num_attrib(self):
        """int: number of attributes in pred_map, bboxes (4) +
        objectness (1) + num_classes"""

        return 5 + self.num_classes

    def _init_layers(self):
        self.convs_bridge = nn.ModuleList()
        self.convs_pred = nn.ModuleList()
        for i in range(self.num_levels):
            conv_bridge = ConvModule(
                self.in_channels[i],
                self.out_channels[i],
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            conv_pred = nn.Conv2d(self.out_channels[i],
                                  self.num_anchors * self.num_attrib, 1)

            self.convs_bridge.append(conv_bridge)
            self.convs_pred.append(conv_pred)

    def init_weights(self):
        """Initialize weights of the head."""
        for m in self.convs_pred:
            normal_init(m, std=0.01)

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple[Tensor]: A tuple of multi-level predication map, each is a
                4D-tensor of shape (batch_size, 5+num_classes, height, width).
        """

        assert len(feats) == self.num_levels
        pred_maps = []
        for i in range(self.num_levels):
            x = feats[i]
            x = self.convs_bridge[i](x)
            pred_map = self.convs_pred[i](x)
            pred_maps.append(pred_map)

        return tuple(pred_maps),

    @force_fp32(apply_to=('pred_maps', ))
    def get_bboxes(self,
                   pred_maps,
                   img_metas,
                   cfg=None,
                   rescale=False,
                   with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            pred_maps (list[Tensor]): Raw predictions for a batch of images.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cfg (mmcv.Config | None): Test / postprocessing configuration,
                if None, test_cfg would be used. Default: None.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where 5 represent
                (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
                The shape of the second tensor in the tuple is (n,), and
                each element represents the class label of the corresponding
                box.
        """
        num_levels = len(pred_maps)
        pred_maps_list = [pred_maps[i].detach() for i in range(num_levels)]
        scale_factors = [
            img_metas[i]['scale_factor']
            for i in range(pred_maps_list[0].shape[0])
        ]
        result_list = self._get_bboxes(pred_maps_list, scale_factors, cfg,
                                       rescale, with_nms)
        return result_list

    def _get_bboxes(self,
                    pred_maps_list,
                    scale_factors,
                    cfg,
                    rescale=False,
                    with_nms=True):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            pred_maps_list (list[Tensor]): Prediction maps for different scales
                of each single image in the batch.
            scale_factors (list(ndarray)): Scale factor of the image arrange as
                (w_scale, h_scale, w_scale, h_scale).
            cfg (mmcv.Config | None): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where 5 represent
                (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
                The shape of the second tensor in the tuple is (n,), and
                each element represents the class label of the corresponding
                box.
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(pred_maps_list) == self.num_levels

        device = pred_maps_list[0].device
        batch_size = pred_maps_list[0].shape[0]

        featmap_sizes = [
            pred_maps_list[i].shape[-2:] for i in range(self.num_levels)
        ]
        multi_lvl_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device)
        # convert to tensor to keep tracing
        nms_pre_tensor = torch.tensor(
            cfg.get('nms_pre', -1), device=device, dtype=torch.long)

        multi_lvl_bboxes = []
        multi_lvl_cls_scores = []
        multi_lvl_conf_scores = []
        for i in range(self.num_levels):
            # get some key info for current scale
            pred_map = pred_maps_list[i]
            stride = self.featmap_strides[i]
            # (b,h, w, num_anchors*num_attrib) ->
            # (b,h*w*num_anchors, num_attrib)
            pred_map = pred_map.permute(0, 2, 3,
                                        1).reshape(batch_size, -1,
                                                   self.num_attrib)
            # Inplace operation like
            # ```pred_map[..., :2] = \torch.sigmoid(pred_map[..., :2])```
            # would create constant tensor when exporting to onnx
            pred_map_conf = torch.sigmoid(pred_map[..., :2])
            pred_map_rest = pred_map[..., 2:]
            pred_map = torch.cat([pred_map_conf, pred_map_rest], dim=-1)
            pred_map_boxes = pred_map[..., :4]
            multi_lvl_anchor = multi_lvl_anchors[i]
            multi_lvl_anchor = multi_lvl_anchor.expand_as(pred_map_boxes)
            bbox_pred = self.bbox_coder.decode(multi_lvl_anchor,
                                               pred_map_boxes, stride)
            # conf and cls
            conf_pred = torch.sigmoid(pred_map[..., 4])
            cls_pred = torch.sigmoid(pred_map[..., 5:]).view(
                batch_size, -1, self.num_classes)  # Cls pred one-hot.

            # Get top-k prediction
            # Always keep topk op for dynamic input in onnx
            if nms_pre_tensor > 0 and (torch.onnx.is_in_onnx_export()
                                       or conf_pred.shape[1] > nms_pre_tensor):
                from torch import _shape_as_tensor
                # keep shape as tensor and get k
                num_anchor = _shape_as_tensor(conf_pred)[1].to(device)
                nms_pre = torch.where(nms_pre_tensor < num_anchor,
                                      nms_pre_tensor, num_anchor)
                _, topk_inds = conf_pred.topk(nms_pre)
                batch_inds = torch.arange(batch_size).view(
                    -1, 1).expand_as(topk_inds).long()
                bbox_pred = bbox_pred[batch_inds, topk_inds, :]
                cls_pred = cls_pred[batch_inds, topk_inds, :]
                conf_pred = conf_pred[batch_inds, topk_inds]

            # Save the result of current scale
            multi_lvl_bboxes.append(bbox_pred)
            multi_lvl_cls_scores.append(cls_pred)
            multi_lvl_conf_scores.append(conf_pred)

        # Merge the results of different scales together
        batch_mlvl_bboxes = torch.cat(multi_lvl_bboxes, dim=1)
        batch_mlvl_scores = torch.cat(multi_lvl_cls_scores, dim=1)
        batch_mlvl_conf_scores = torch.cat(multi_lvl_conf_scores, dim=1)

        # Set max number of box to be feed into nms in deployment
        deploy_nms_pre = cfg.get('deploy_nms_pre', -1)
        if deploy_nms_pre > 0 and torch.onnx.is_in_onnx_export():
            _, topk_inds = batch_mlvl_conf_scores.topk(deploy_nms_pre)
            batch_inds = torch.arange(batch_size).view(
                -1, 1).expand_as(topk_inds).long()
            batch_mlvl_bboxes = batch_mlvl_bboxes[batch_inds, topk_inds, :]
            batch_mlvl_scores = batch_mlvl_scores[batch_inds, topk_inds, :]
            batch_mlvl_conf_scores = batch_mlvl_conf_scores[batch_inds,
                                                            topk_inds]

        if with_nms and (batch_mlvl_conf_scores.size(0) == 0):
            return torch.zeros((0, 5)), torch.zeros((0, ))

        if rescale:
            batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor(
                scale_factors).unsqueeze(1)

        # In mmdet 2.x, the class_id for background is num_classes.
        # i.e., the last column.
        padding = batch_mlvl_scores.new_zeros(batch_size,
                                              batch_mlvl_scores.shape[1], 1)
        batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1)

        # Support exporting to onnx without nms
        if with_nms and cfg.get('nms', None) is not None:
            det_results = []
            for (mlvl_bboxes, mlvl_scores,
                 mlvl_conf_scores) in zip(batch_mlvl_bboxes, batch_mlvl_scores,
                                          batch_mlvl_conf_scores):
                # Filtering out all predictions with conf < conf_thr
                conf_thr = cfg.get('conf_thr', -1)
                if conf_thr > 0 and (not torch.onnx.is_in_onnx_export()):
                    # TensorRT not support NonZero
                    # add as_tuple=False for compatibility in Pytorch 1.6
                    # flatten would create a Reshape op with constant values,
                    # and raise RuntimeError when doing inference in ONNX
                    # Runtime with a different input image (#4221).
                    conf_inds = mlvl_conf_scores.ge(conf_thr).nonzero(
                        as_tuple=False).squeeze(1)
                    mlvl_bboxes = mlvl_bboxes[conf_inds, :]
                    mlvl_scores = mlvl_scores[conf_inds, :]
                    mlvl_conf_scores = mlvl_conf_scores[conf_inds]

                det_bboxes, det_labels = multiclass_nms(
                    mlvl_bboxes,
                    mlvl_scores,
                    cfg.score_thr,
                    cfg.nms,
                    cfg.max_per_img,
                    score_factors=mlvl_conf_scores)
                det_results.append(tuple([det_bboxes, det_labels]))

        else:
            det_results = [
                tuple(mlvl_bs)
                for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores,
                                   batch_mlvl_conf_scores)
            ]
        return det_results

    @force_fp32(apply_to=('pred_maps', ))
    def loss(self,
             pred_maps,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            pred_maps (list[Tensor]): Prediction map for each scale level,
                shape (N, num_anchors * num_attrib, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_imgs = len(img_metas)
        device = pred_maps[0][0].device

        featmap_sizes = [
            pred_maps[i].shape[-2:] for i in range(self.num_levels)
        ]
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device)
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]

        responsible_flag_list = []
        for img_id in range(len(img_metas)):
            responsible_flag_list.append(
                self.anchor_generator.responsible_flags(
                    featmap_sizes, gt_bboxes[img_id], device))

        target_maps_list, neg_maps_list = self.get_targets(
            anchor_list, responsible_flag_list, gt_bboxes, gt_labels)

        losses_cls, losses_conf, losses_xy, losses_wh = multi_apply(
            self.loss_single, pred_maps, target_maps_list, neg_maps_list)

        return dict(
            loss_cls=losses_cls,
            loss_conf=losses_conf,
            loss_xy=losses_xy,
            loss_wh=losses_wh)

    def loss_single(self, pred_map, target_map, neg_map):
        """Compute loss of a single image from a batch.

        Args:
            pred_map (Tensor): Raw predictions for a single level.
            target_map (Tensor): The Ground-Truth target for a single level.
            neg_map (Tensor): The negative masks for a single level.

        Returns:
            tuple:
                loss_cls (Tensor): Classification loss.
                loss_conf (Tensor): Confidence loss.
                loss_xy (Tensor): Regression loss of x, y coordinate.
                loss_wh (Tensor): Regression loss of w, h coordinate.
        """

        num_imgs = len(pred_map)
        pred_map = pred_map.permute(0, 2, 3,
                                    1).reshape(num_imgs, -1, self.num_attrib)
        neg_mask = neg_map.float()
        pos_mask = target_map[..., 4]
        pos_and_neg_mask = neg_mask + pos_mask
        pos_mask = pos_mask.unsqueeze(dim=-1)
        if torch.max(pos_and_neg_mask) > 1.:
            warnings.warn('There is overlap between pos and neg sample.')
            pos_and_neg_mask = pos_and_neg_mask.clamp(min=0., max=1.)

        pred_xy = pred_map[..., :2]
        pred_wh = pred_map[..., 2:4]
        pred_conf = pred_map[..., 4]
        pred_label = pred_map[..., 5:]

        target_xy = target_map[..., :2]
        target_wh = target_map[..., 2:4]
        target_conf = target_map[..., 4]
        target_label = target_map[..., 5:]

        loss_cls = self.loss_cls(pred_label, target_label, weight=pos_mask)
        loss_conf = self.loss_conf(
            pred_conf, target_conf, weight=pos_and_neg_mask)
        loss_xy = self.loss_xy(pred_xy, target_xy, weight=pos_mask)
        loss_wh = self.loss_wh(pred_wh, target_wh, weight=pos_mask)

        return loss_cls, loss_conf, loss_xy, loss_wh

    def get_targets(self, anchor_list, responsible_flag_list, gt_bboxes_list,
                    gt_labels_list):
        """Compute target maps for anchors in multiple images.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_total_anchors, 4).
            responsible_flag_list (list[list[Tensor]]): Multi level responsible
                flags of each image. Each element is a tensor of shape
                (num_total_anchors, )
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            gt_labels_list (list[Tensor]): Ground truth labels of each box.

        Returns:
            tuple: Usually returns a tuple containing learning targets.
                - target_map_list (list[Tensor]): Target map of each level.
                - neg_map_list (list[Tensor]): Negative map of each level.
        """
        num_imgs = len(anchor_list)

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]

        results = multi_apply(self._get_targets_single, anchor_list,
                              responsible_flag_list, gt_bboxes_list,
                              gt_labels_list)

        all_target_maps, all_neg_maps = results
        assert num_imgs == len(all_target_maps) == len(all_neg_maps)
        target_maps_list = images_to_levels(all_target_maps, num_level_anchors)
        neg_maps_list = images_to_levels(all_neg_maps, num_level_anchors)

        return target_maps_list, neg_maps_list

    def _get_targets_single(self, anchors, responsible_flags, gt_bboxes,
                            gt_labels):
        """Generate matching bounding box prior and converted GT.

        Args:
            anchors (list[Tensor]): Multi-level anchors of the image.
            responsible_flags (list[Tensor]): Multi-level responsible flags of
                anchors
            gt_bboxes (Tensor): Ground truth bboxes of single image.
            gt_labels (Tensor): Ground truth labels of single image.

        Returns:
            tuple:
                target_map (Tensor): Predication target map of each
                    scale level, shape (num_total_anchors,
                    5+num_classes)
                neg_map (Tensor): Negative map of each scale level,
                    shape (num_total_anchors,)
        """

        anchor_strides = []
        for i in range(len(anchors)):
            anchor_strides.append(
                torch.tensor(self.featmap_strides[i],
                             device=gt_bboxes.device).repeat(len(anchors[i])))
        concat_anchors = torch.cat(anchors)
        concat_responsible_flags = torch.cat(responsible_flags)

        anchor_strides = torch.cat(anchor_strides)
        assert len(anchor_strides) == len(concat_anchors) == \
               len(concat_responsible_flags)
        assign_result = self.assigner.assign(concat_anchors,
                                             concat_responsible_flags,
                                             gt_bboxes)
        sampling_result = self.sampler.sample(assign_result, concat_anchors,
                                              gt_bboxes)

        target_map = concat_anchors.new_zeros(
            concat_anchors.size(0), self.num_attrib)

        target_map[sampling_result.pos_inds, :4] = self.bbox_coder.encode(
            sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes,
            anchor_strides[sampling_result.pos_inds])

        target_map[sampling_result.pos_inds, 4] = 1

        gt_labels_one_hot = F.one_hot(
            gt_labels, num_classes=self.num_classes).float()
        if self.one_hot_smoother != 0:  # label smooth
            gt_labels_one_hot = gt_labels_one_hot * (
                1 - self.one_hot_smoother
            ) + self.one_hot_smoother / self.num_classes
        target_map[sampling_result.pos_inds, 5:] = gt_labels_one_hot[
            sampling_result.pos_assigned_gt_inds]

        neg_map = concat_anchors.new_zeros(
            concat_anchors.size(0), dtype=torch.uint8)
        neg_map[sampling_result.neg_inds] = 1

        return target_map, neg_map

    def aug_test(self, feats, img_metas, rescale=False):
        """Test function with test time augmentation.

        Args:
            feats (list[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains features for all images in the batch.
            img_metas (list[list[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch. each dict has image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[ndarray]: bbox results of each class
        """
        return self.aug_test_bboxes(feats, img_metas, rescale=rescale)