File size: 30,957 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, Linear, build_activation_layer
from mmcv.runner import force_fp32

from mmdet.core import (bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh,
                        build_assigner, build_sampler, multi_apply,
                        reduce_mean)
from mmdet.models.utils import (FFN, build_positional_encoding,
                                build_transformer)
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead


@HEADS.register_module()
class TransformerHead(AnchorFreeHead):
    """Implements the DETR transformer head.

    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.

    Args:
        num_classes (int): Number of categories excluding the background.
        in_channels (int): Number of channels in the input feature map.
        num_fcs (int, optional): Number of fully-connected layers used in
            `FFN`, which is then used for the regression head. Default 2.
        transformer (dict, optional): Config for transformer.
        positional_encoding (dict, optional): Config for position encoding.
        loss_cls (dict, optional): Config of the classification loss.
            Default `CrossEntropyLoss`.
        loss_bbox (dict, optional): Config of the regression loss.
            Default `L1Loss`.
        loss_iou (dict, optional): Config of the regression iou loss.
            Default `GIoULoss`.
        tran_cfg (dict, optional): Training config of transformer head.
        test_cfg (dict, optional): Testing config of transformer head.

    Example:
        >>> import torch
        >>> self = TransformerHead(80, 2048)
        >>> x = torch.rand(1, 2048, 32, 32)
        >>> mask = torch.ones(1, 32, 32).to(x.dtype)
        >>> mask[:, :16, :15] = 0
        >>> all_cls_scores, all_bbox_preds = self(x, mask)
    """

    def __init__(self,
                 num_classes,
                 in_channels,
                 num_fcs=2,
                 transformer=dict(
                     type='Transformer',
                     embed_dims=256,
                     num_heads=8,
                     num_encoder_layers=6,
                     num_decoder_layers=6,
                     feedforward_channels=2048,
                     dropout=0.1,
                     act_cfg=dict(type='ReLU', inplace=True),
                     norm_cfg=dict(type='LN'),
                     num_fcs=2,
                     pre_norm=False,
                     return_intermediate_dec=True),
                 positional_encoding=dict(
                     type='SinePositionalEncoding',
                     num_feats=128,
                     normalize=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     bg_cls_weight=0.1,
                     use_sigmoid=False,
                     loss_weight=1.0,
                     class_weight=1.0),
                 loss_bbox=dict(type='L1Loss', loss_weight=5.0),
                 loss_iou=dict(type='GIoULoss', loss_weight=2.0),
                 train_cfg=dict(
                     assigner=dict(
                         type='HungarianAssigner',
                         cls_cost=dict(type='ClassificationCost', weight=1.),
                         reg_cost=dict(type='BBoxL1Cost', weight=5.0),
                         iou_cost=dict(
                             type='IoUCost', iou_mode='giou', weight=2.0))),
                 test_cfg=dict(max_per_img=100),
                 **kwargs):
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since it brings inconvenience when the initialization of
        # `AnchorFreeHead` is called.
        super(AnchorFreeHead, self).__init__()
        use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        assert not use_sigmoid_cls, 'setting use_sigmoid_cls as True is ' \
            'not supported in DETR, since background is needed for the ' \
            'matching process.'
        assert 'embed_dims' in transformer \
            and 'num_feats' in positional_encoding
        num_feats = positional_encoding['num_feats']
        embed_dims = transformer['embed_dims']
        assert num_feats * 2 == embed_dims, 'embed_dims should' \
            f' be exactly 2 times of num_feats. Found {embed_dims}' \
            f' and {num_feats}.'
        assert test_cfg is not None and 'max_per_img' in test_cfg

        class_weight = loss_cls.get('class_weight', None)
        if class_weight is not None:
            assert isinstance(class_weight, float), 'Expected ' \
                'class_weight to have type float. Found ' \
                f'{type(class_weight)}.'
            # NOTE following the official DETR rep0, bg_cls_weight means
            # relative classification weight of the no-object class.
            bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
            assert isinstance(bg_cls_weight, float), 'Expected ' \
                'bg_cls_weight to have type float. Found ' \
                f'{type(bg_cls_weight)}.'
            class_weight = torch.ones(num_classes + 1) * class_weight
            # set background class as the last indice
            class_weight[num_classes] = bg_cls_weight
            loss_cls.update({'class_weight': class_weight})
            if 'bg_cls_weight' in loss_cls:
                loss_cls.pop('bg_cls_weight')
            self.bg_cls_weight = bg_cls_weight

        if train_cfg:
            assert 'assigner' in train_cfg, 'assigner should be provided '\
                'when train_cfg is set.'
            assigner = train_cfg['assigner']
            assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \
                'The classification weight for loss and matcher should be' \
                'exactly the same.'
            assert loss_bbox['loss_weight'] == assigner['reg_cost'][
                'weight'], 'The regression L1 weight for loss and matcher ' \
                'should be exactly the same.'
            assert loss_iou['loss_weight'] == assigner['iou_cost']['weight'], \
                'The regression iou weight for loss and matcher should be' \
                'exactly the same.'
            self.assigner = build_assigner(assigner)
            # DETR sampling=False, so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)
        self.num_classes = num_classes
        self.cls_out_channels = num_classes + 1
        self.in_channels = in_channels
        self.num_fcs = num_fcs
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.use_sigmoid_cls = use_sigmoid_cls
        self.embed_dims = embed_dims
        self.num_query = test_cfg['max_per_img']
        self.fp16_enabled = False
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_iou = build_loss(loss_iou)
        self.act_cfg = transformer.get('act_cfg',
                                       dict(type='ReLU', inplace=True))
        self.activate = build_activation_layer(self.act_cfg)
        self.positional_encoding = build_positional_encoding(
            positional_encoding)
        self.transformer = build_transformer(transformer)
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the transformer head."""
        self.input_proj = Conv2d(
            self.in_channels, self.embed_dims, kernel_size=1)
        self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        self.reg_ffn = FFN(
            self.embed_dims,
            self.embed_dims,
            self.num_fcs,
            self.act_cfg,
            dropout=0.0,
            add_residual=False)
        self.fc_reg = Linear(self.embed_dims, 4)
        self.query_embedding = nn.Embedding(self.num_query, self.embed_dims)

    def init_weights(self, distribution='uniform'):
        """Initialize weights of the transformer head."""
        # The initialization for transformer is important
        self.transformer.init_weights()

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        """load checkpoints."""
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since `AnchorFreeHead._load_from_state_dict` should not be
        # called here. Invoking the default `Module._load_from_state_dict`
        # is enough.
        super(AnchorFreeHead,
              self)._load_from_state_dict(state_dict, prefix, local_metadata,
                                          strict, missing_keys,
                                          unexpected_keys, error_msgs)

    def forward(self, feats, img_metas):
        """Forward function.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): List of image information.

        Returns:
            tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.

                - all_cls_scores_list (list[Tensor]): Classification scores \
                    for each scale level. Each is a 4D-tensor with shape \
                    [nb_dec, bs, num_query, cls_out_channels]. Note \
                    `cls_out_channels` should includes background.
                - all_bbox_preds_list (list[Tensor]): Sigmoid regression \
                    outputs for each scale level. Each is a 4D-tensor with \
                    normalized coordinate format (cx, cy, w, h) and shape \
                    [nb_dec, bs, num_query, 4].
        """
        num_levels = len(feats)
        img_metas_list = [img_metas for _ in range(num_levels)]
        return multi_apply(self.forward_single, feats, img_metas_list)

    def forward_single(self, x, img_metas):
        """"Forward function for a single feature level.

        Args:
            x (Tensor): Input feature from backbone's single stage, shape
                [bs, c, h, w].
            img_metas (list[dict]): List of image information.

        Returns:
            all_cls_scores (Tensor): Outputs from the classification head,
                shape [nb_dec, bs, num_query, cls_out_channels]. Note
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression
                head with normalized coordinate format (cx, cy, w, h).
                Shape [nb_dec, bs, num_query, 4].
        """
        # construct binary masks which used for the transformer.
        # NOTE following the official DETR repo, non-zero values representing
        # ignored positions, while zero values means valid positions.
        batch_size = x.size(0)
        input_img_h, input_img_w = img_metas[0]['batch_input_shape']
        masks = x.new_ones((batch_size, input_img_h, input_img_w))
        for img_id in range(batch_size):
            img_h, img_w, _ = img_metas[img_id]['img_shape']
            masks[img_id, :img_h, :img_w] = 0

        x = self.input_proj(x)
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(
            masks.unsqueeze(1), size=x.shape[-2:]).to(torch.bool).squeeze(1)
        # position encoding
        pos_embed = self.positional_encoding(masks)  # [bs, embed_dim, h, w]
        # outs_dec: [nb_dec, bs, num_query, embed_dim]
        outs_dec, _ = self.transformer(x, masks, self.query_embedding.weight,
                                       pos_embed)

        all_cls_scores = self.fc_cls(outs_dec)
        all_bbox_preds = self.fc_reg(self.activate(
            self.reg_ffn(outs_dec))).sigmoid()
        return all_cls_scores, all_bbox_preds

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def loss(self,
             all_cls_scores_list,
             all_bbox_preds_list,
             gt_bboxes_list,
             gt_labels_list,
             img_metas,
             gt_bboxes_ignore=None):
        """"Loss function.

        Only outputs from the last feature level are used for computing
        losses by default.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
                which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        # NOTE defaultly only the outputs from the last feature scale is used.
        all_cls_scores = all_cls_scores_list[-1]
        all_bbox_preds = all_bbox_preds_list[-1]
        assert gt_bboxes_ignore is None, \
            'Only supports for gt_bboxes_ignore setting to None.'

        num_dec_layers = len(all_cls_scores)
        all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
        all_gt_labels_list = [gt_labels_list for _ in range(num_dec_layers)]
        all_gt_bboxes_ignore_list = [
            gt_bboxes_ignore for _ in range(num_dec_layers)
        ]
        img_metas_list = [img_metas for _ in range(num_dec_layers)]

        losses_cls, losses_bbox, losses_iou = multi_apply(
            self.loss_single, all_cls_scores, all_bbox_preds,
            all_gt_bboxes_list, all_gt_labels_list, img_metas_list,
            all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]
        loss_dict['loss_iou'] = losses_iou[-1]
        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i, loss_iou_i in zip(losses_cls[:-1],
                                                       losses_bbox[:-1],
                                                       losses_iou[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            loss_dict[f'd{num_dec_layer}.loss_iou'] = loss_iou_i
            num_dec_layer += 1
        return loss_dict

    def loss_single(self,
                    cls_scores,
                    bbox_preds,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
            cls_scores (Tensor): Box score logits from a single decoder layer
                for all images. Shape [bs, num_query, cls_out_channels].
            bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
                for all images, with normalized coordinate (cx, cy, w, h) and
                shape [bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components for outputs from
                a single decoder layer.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           gt_bboxes_list, gt_labels_list,
                                           img_metas, gt_bboxes_ignore_list)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)
        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        loss_cls = self.loss_cls(
            cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes accross all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()

        # construct factors used for rescale bboxes
        factors = []
        for img_meta, bbox_pred in zip(img_metas, bbox_preds):
            img_h, img_w, _ = img_meta['img_shape']
            factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                           img_h]).unsqueeze(0).repeat(
                                               bbox_pred.size(0), 1)
            factors.append(factor)
        factors = torch.cat(factors, 0)

        # DETR regress the relative position of boxes (cxcywh) in the image,
        # thus the learning target is normalized by the image size. So here
        # we need to re-scale them for calculating IoU loss
        bbox_preds = bbox_preds.reshape(-1, 4)
        bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors
        bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors

        # regression IoU loss, defaultly GIoU loss
        loss_iou = self.loss_iou(
            bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos)

        # regression L1 loss
        loss_bbox = self.loss_bbox(
            bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos)
        return loss_cls, loss_bbox, loss_iou

    def get_targets(self,
                    cls_scores_list,
                    bbox_preds_list,
                    gt_bboxes_list,
                    gt_labels_list,
                    img_metas,
                    gt_bboxes_ignore_list=None):
        """"Compute regression and classification targets for a batch image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_scores_list (list[Tensor]): Box score logits from a single
                decoder layer for each image with shape [num_query,
                cls_out_channels].
            bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx, cy, w, h) and shape [num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            img_metas (list[dict]): List of image meta information.
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels for all images.
                - label_weights_list (list[Tensor]): Label weights for all \
                    images.
                - bbox_targets_list (list[Tensor]): BBox targets for all \
                    images.
                - bbox_weights_list (list[Tensor]): BBox weights for all \
                    images.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
        """
        assert gt_bboxes_ignore_list is None, \
            'Only supports for gt_bboxes_ignore setting to None.'
        num_imgs = len(cls_scores_list)
        gt_bboxes_ignore_list = [
            gt_bboxes_ignore_list for _ in range(num_imgs)
        ]

        (labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, pos_inds_list, neg_inds_list) = multi_apply(
             self._get_target_single, cls_scores_list, bbox_preds_list,
             gt_bboxes_list, gt_labels_list, img_metas, gt_bboxes_ignore_list)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def _get_target_single(self,
                           cls_score,
                           bbox_pred,
                           gt_bboxes,
                           gt_labels,
                           img_meta,
                           gt_bboxes_ignore=None):
        """"Compute regression and classification targets for one image.

        Outputs from a single decoder layer of a single feature level are used.

        Args:
            cls_score (Tensor): Box score logits from a single decoder layer
                for one image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
                for one image, with normalized coordinate (cx, cy, w, h) and
                shape [num_query, 4].
            gt_bboxes (Tensor): Ground truth bboxes for one image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth class indices for one image
                with shape (num_gts, ).
            img_meta (dict): Meta information for one image.
            gt_bboxes_ignore (Tensor, optional): Bounding boxes
                which can be ignored. Default None.

        Returns:
            tuple[Tensor]: a tuple containing the following for one image.

                - labels (Tensor): Labels of each image.
                - label_weights (Tensor]): Label weights of each image.
                - bbox_targets (Tensor): BBox targets of each image.
                - bbox_weights (Tensor): BBox weights of each image.
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
        """

        num_bboxes = bbox_pred.size(0)
        # assigner and sampler
        assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes,
                                             gt_labels, img_meta,
                                             gt_bboxes_ignore)
        sampling_result = self.sampler.sample(assign_result, bbox_pred,
                                              gt_bboxes)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label targets
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        bbox_targets = torch.zeros_like(bbox_pred)
        bbox_weights = torch.zeros_like(bbox_pred)
        bbox_weights[pos_inds] = 1.0
        img_h, img_w, _ = img_meta['img_shape']

        # DETR regress the relative position of boxes (cxcywh) in the image.
        # Thus the learning target should be normalized by the image size, also
        # the box format should be converted from defaultly x1y1x2y2 to cxcywh.
        factor = bbox_pred.new_tensor([img_w, img_h, img_w,
                                       img_h]).unsqueeze(0)
        pos_gt_bboxes_normalized = sampling_result.pos_gt_bboxes / factor
        pos_gt_bboxes_targets = bbox_xyxy_to_cxcywh(pos_gt_bboxes_normalized)
        bbox_targets[pos_inds] = pos_gt_bboxes_targets
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    # over-write because img_metas are needed as inputs for bbox_head.
    def forward_train(self,
                      x,
                      img_metas,
                      gt_bboxes,
                      gt_labels=None,
                      gt_bboxes_ignore=None,
                      proposal_cfg=None,
                      **kwargs):
        """Forward function for training mode.

        Args:
            x (list[Tensor]): Features from backbone.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            proposal_cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert proposal_cfg is None, '"proposal_cfg" must be None'
        outs = self(x, img_metas)
        if gt_labels is None:
            loss_inputs = outs + (gt_bboxes, img_metas)
        else:
            loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
        losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        return losses

    @force_fp32(apply_to=('all_cls_scores_list', 'all_bbox_preds_list'))
    def get_bboxes(self,
                   all_cls_scores_list,
                   all_bbox_preds_list,
                   img_metas,
                   rescale=False):
        """Transform network outputs for a batch into bbox predictions.

        Args:
            all_cls_scores_list (list[Tensor]): Classification outputs
                for each feature level. Each is a 4D-tensor with shape
                [nb_dec, bs, num_query, cls_out_channels].
            all_bbox_preds_list (list[Tensor]): Sigmoid regression
                outputs for each feature level. Each is a 4D-tensor with
                normalized coordinate format (cx, cy, w, h) and shape
                [nb_dec, bs, num_query, 4].
            img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If True, return boxes in original
                image space. Default False.

        Returns:
            list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. \
                The first item is an (n, 5) tensor, where the first 4 columns \
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the \
                5-th column is a score between 0 and 1. The second item is a \
                (n,) tensor where each item is the predicted class label of \
                the corresponding box.
        """
        # NOTE defaultly only using outputs from the last feature level,
        # and only the outputs from the last decoder layer is used.
        cls_scores = all_cls_scores_list[-1][-1]
        bbox_preds = all_bbox_preds_list[-1][-1]

        result_list = []
        for img_id in range(len(img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            proposals = self._get_bboxes_single(cls_score, bbox_pred,
                                                img_shape, scale_factor,
                                                rescale)
            result_list.append(proposals)
        return result_list

    def _get_bboxes_single(self,
                           cls_score,
                           bbox_pred,
                           img_shape,
                           scale_factor,
                           rescale=False):
        """Transform outputs from the last decoder layer into bbox predictions
        for each image.

        Args:
            cls_score (Tensor): Box score logits from the last decoder layer
                for each image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from the last decoder layer
                for each image, with coordinate format (cx, cy, w, h) and
                shape [num_query, 4].
            img_shape (tuple[int]): Shape of input image, (height, width, 3).
            scale_factor (ndarray, optional): Scale factor of the image arange
                as (w_scale, h_scale, w_scale, h_scale).
            rescale (bool, optional): If True, return boxes in original image
                space. Default False.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels.

                - det_bboxes: Predicted bboxes with shape [num_query, 5], \
                    where the first 4 columns are bounding box positions \
                    (tl_x, tl_y, br_x, br_y) and the 5-th column are scores \
                    between 0 and 1.
                - det_labels: Predicted labels of the corresponding box with \
                    shape [num_query].
        """
        assert len(cls_score) == len(bbox_pred)
        # exclude background
        scores, det_labels = F.softmax(cls_score, dim=-1)[..., :-1].max(-1)
        det_bboxes = bbox_cxcywh_to_xyxy(bbox_pred)
        det_bboxes[:, 0::2] = det_bboxes[:, 0::2] * img_shape[1]
        det_bboxes[:, 1::2] = det_bboxes[:, 1::2] * img_shape[0]
        det_bboxes[:, 0::2].clamp_(min=0, max=img_shape[1])
        det_bboxes[:, 1::2].clamp_(min=0, max=img_shape[0])
        if rescale:
            det_bboxes /= det_bboxes.new_tensor(scale_factor)
        det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(1)), -1)
        return det_bboxes, det_labels