File size: 11,038 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import xavier_init
from mmcv.runner import force_fp32

from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, multi_apply)
from ..builder import HEADS
from ..losses import smooth_l1_loss
from .anchor_head import AnchorHead


# TODO: add loss evaluator for SSD
@HEADS.register_module()
class SSDHead(AnchorHead):
    """SSD head used in https://arxiv.org/abs/1512.02325.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Default False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
    """  # noqa: W605

    def __init__(self,
                 num_classes=80,
                 in_channels=(512, 1024, 512, 256, 256, 256),
                 anchor_generator=dict(
                     type='SSDAnchorGenerator',
                     scale_major=False,
                     input_size=300,
                     strides=[8, 16, 32, 64, 100, 300],
                     ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
                     basesize_ratio_range=(0.1, 0.9)),
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     clip_border=True,
                     target_means=[.0, .0, .0, .0],
                     target_stds=[1.0, 1.0, 1.0, 1.0],
                 ),
                 reg_decoded_bbox=False,
                 train_cfg=None,
                 test_cfg=None):
        super(AnchorHead, self).__init__()
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.cls_out_channels = num_classes + 1  # add background class
        self.anchor_generator = build_anchor_generator(anchor_generator)
        num_anchors = self.anchor_generator.num_base_anchors

        reg_convs = []
        cls_convs = []
        for i in range(len(in_channels)):
            reg_convs.append(
                nn.Conv2d(
                    in_channels[i],
                    num_anchors[i] * 4,
                    kernel_size=3,
                    padding=1))
            cls_convs.append(
                nn.Conv2d(
                    in_channels[i],
                    num_anchors[i] * (num_classes + 1),
                    kernel_size=3,
                    padding=1))
        self.reg_convs = nn.ModuleList(reg_convs)
        self.cls_convs = nn.ModuleList(cls_convs)

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.reg_decoded_bbox = reg_decoded_bbox
        self.use_sigmoid_cls = False
        self.cls_focal_loss = False
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        # set sampling=False for archor_target
        self.sampling = False
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # SSD sampling=False so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)
        self.fp16_enabled = False

    def init_weights(self):
        """Initialize weights of the head."""
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform', bias=0)

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Classification scores for all scale
                    levels, each is a 4D-tensor, the channels number is
                    num_anchors * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for all scale
                    levels, each is a 4D-tensor, the channels number is
                    num_anchors * 4.
        """
        cls_scores = []
        bbox_preds = []
        for feat, reg_conv, cls_conv in zip(feats, self.reg_convs,
                                            self.cls_convs):
            cls_scores.append(cls_conv(feat))
            bbox_preds.append(reg_conv(feat))
        return cls_scores, bbox_preds

    def loss_single(self, cls_score, bbox_pred, anchor, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples):
        """Compute loss of a single image.

        Args:
            cls_score (Tensor): Box scores for eachimage
                Has shape (num_total_anchors, num_classes).
            bbox_pred (Tensor): Box energies / deltas for each image
                level with shape (num_total_anchors, 4).
            anchors (Tensor): Box reference for each scale level with shape
                (num_total_anchors, 4).
            labels (Tensor): Labels of each anchors with shape
                (num_total_anchors,).
            label_weights (Tensor): Label weights of each anchor with shape
                (num_total_anchors,)
            bbox_targets (Tensor): BBox regression targets of each anchor wight
                shape (num_total_anchors, 4).
            bbox_weights (Tensor): BBox regression loss weights of each anchor
                with shape (num_total_anchors, 4).
            num_total_samples (int): If sampling, num total samples equal to
                the number of total anchors; Otherwise, it is the number of
                positive anchors.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        loss_cls_all = F.cross_entropy(
            cls_score, labels, reduction='none') * label_weights
        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        pos_inds = ((labels >= 0) &
                    (labels < self.num_classes)).nonzero().reshape(-1)
        neg_inds = (labels == self.num_classes).nonzero().view(-1)

        num_pos_samples = pos_inds.size(0)
        num_neg_samples = self.train_cfg.neg_pos_ratio * num_pos_samples
        if num_neg_samples > neg_inds.size(0):
            num_neg_samples = neg_inds.size(0)
        topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
        loss_cls_pos = loss_cls_all[pos_inds].sum()
        loss_cls_neg = topk_loss_cls_neg.sum()
        loss_cls = (loss_cls_pos + loss_cls_neg) / num_total_samples

        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)

        loss_bbox = smooth_l1_loss(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            beta=self.train_cfg.smoothl1_beta,
            avg_factor=num_total_samples)
        return loss_cls[None], loss_bbox

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=1,
            unmap_outputs=False)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets

        num_images = len(img_metas)
        all_cls_scores = torch.cat([
            s.permute(0, 2, 3, 1).reshape(
                num_images, -1, self.cls_out_channels) for s in cls_scores
        ], 1)
        all_labels = torch.cat(labels_list, -1).view(num_images, -1)
        all_label_weights = torch.cat(label_weights_list,
                                      -1).view(num_images, -1)
        all_bbox_preds = torch.cat([
            b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
            for b in bbox_preds
        ], -2)
        all_bbox_targets = torch.cat(bbox_targets_list,
                                     -2).view(num_images, -1, 4)
        all_bbox_weights = torch.cat(bbox_weights_list,
                                     -2).view(num_images, -1, 4)

        # concat all level anchors to a single tensor
        all_anchors = []
        for i in range(num_images):
            all_anchors.append(torch.cat(anchor_list[i]))

        # check NaN and Inf
        assert torch.isfinite(all_cls_scores).all().item(), \
            'classification scores become infinite or NaN!'
        assert torch.isfinite(all_bbox_preds).all().item(), \
            'bbox predications become infinite or NaN!'

        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            all_cls_scores,
            all_bbox_preds,
            all_anchors,
            all_labels,
            all_label_weights,
            all_bbox_targets,
            all_bbox_weights,
            num_total_samples=num_total_pos)
        return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)