File size: 18,883 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import numpy as np
import torch
from mmcv.cnn import normal_init
from mmcv.runner import force_fp32

from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply,
                        unmap)
from ..builder import HEADS
from ..losses.accuracy import accuracy
from ..losses.utils import weight_reduce_loss
from .retina_head import RetinaHead


@HEADS.register_module()
class FSAFHead(RetinaHead):
    """Anchor-free head used in `FSAF <https://arxiv.org/abs/1903.00621>`_.

    The head contains two subnetworks. The first classifies anchor boxes and
    the second regresses deltas for the anchors (num_anchors is 1 for anchor-
    free methods)

    Args:
        *args: Same as its base class in :class:`RetinaHead`
        score_threshold (float, optional): The score_threshold to calculate
            positive recall. If given, prediction scores lower than this value
            is counted as incorrect prediction. Default to None.
        **kwargs: Same as its base class in :class:`RetinaHead`

    Example:
        >>> import torch
        >>> self = FSAFHead(11, 7)
        >>> x = torch.rand(1, 7, 32, 32)
        >>> cls_score, bbox_pred = self.forward_single(x)
        >>> # Each anchor predicts a score for each class except background
        >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors
        >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors
        >>> assert cls_per_anchor == self.num_classes
        >>> assert box_per_anchor == 4
    """

    def __init__(self, *args, score_threshold=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.score_threshold = score_threshold

    def forward_single(self, x):
        """Forward feature map of a single scale level.

        Args:
            x (Tensor): Feature map of a single scale level.

        Returns:
            tuple (Tensor):
                cls_score (Tensor): Box scores for each scale level
                    Has shape (N, num_points * num_classes, H, W).
                bbox_pred (Tensor): Box energies / deltas for each scale
                    level with shape (N, num_points * 4, H, W).
        """
        cls_score, bbox_pred = super().forward_single(x)
        # relu: TBLR encoder only accepts positive bbox_pred
        return cls_score, self.relu(bbox_pred)

    def init_weights(self):
        """Initialize weights of the head."""
        super(FSAFHead, self).init_weights()
        # The positive bias in self.retina_reg conv is to prevent predicted \
        #  bbox with 0 area
        normal_init(self.retina_reg, std=0.01, bias=0.25)

    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        Most of the codes are the same with the base class
          :obj: `AnchorHead`, except that it also collects and returns
          the matched gt index in the image (from 0 to num_gt-1). If the
          anchor bbox is not matched to any gt, the corresponding value in
          pos_gt_inds is -1.
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None, ) * 7
        # Assign gt and sample anchors
        anchors = flat_anchors[inside_flags.type(torch.bool), :]
        assign_result = self.assigner.assign(
            anchors, gt_bboxes, gt_bboxes_ignore,
            None if self.sampling else gt_labels)

        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros((num_valid_anchors, label_channels),
                                          dtype=torch.float)
        pos_gt_inds = anchors.new_full((num_valid_anchors, ),
                                       -1,
                                       dtype=torch.long)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
                # is applied directly on the decoded bounding boxes, both
                # the predicted boxes and regression targets should be with
                # absolute coordinate format.
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            # The assigned gt_index for each anchor. (0-based)
            pos_gt_inds[pos_inds] = sampling_result.pos_assigned_gt_inds
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # shadowed_labels is a tensor composed of tuples
        #  (anchor_inds, class_label) that indicate those anchors lying in the
        #  outer region of a gt or overlapped by another gt with a smaller
        #  area.
        #
        # Therefore, only the shadowed labels are ignored for loss calculation.
        # the key `shadowed_labels` is defined in :obj:`CenterRegionAssigner`
        shadowed_labels = assign_result.get_extra_property('shadowed_labels')
        if shadowed_labels is not None and shadowed_labels.numel():
            if len(shadowed_labels.shape) == 2:
                idx_, label_ = shadowed_labels[:, 0], shadowed_labels[:, 1]
                assert (labels[idx_] != label_).all(), \
                    'One label cannot be both positive and ignored'
                label_weights[idx_, label_] = 0
            else:
                label_weights[shadowed_labels] = 0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(labels, num_total_anchors, inside_flags)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
            pos_gt_inds = unmap(
                pos_gt_inds, num_total_anchors, inside_flags, fill=-1)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result, pos_gt_inds)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_points * 4, H, W).
            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        for i in range(len(bbox_preds)):  # loop over fpn level
            # avoid 0 area of the predicted bbox
            bbox_preds[i] = bbox_preds[i].clamp(min=1e-4)
        # TODO: It may directly use the base-class loss function.
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        batch_size = len(gt_bboxes)
        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=label_channels)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg,
         pos_assigned_gt_inds_list) = cls_reg_targets

        num_gts = np.array(list(map(len, gt_labels)))
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)
        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors and flags to a single tensor
        concat_anchor_list = []
        for i in range(len(anchor_list)):
            concat_anchor_list.append(torch.cat(anchor_list[i]))
        all_anchor_list = images_to_levels(concat_anchor_list,
                                           num_level_anchors)
        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            all_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples)

        # `pos_assigned_gt_inds_list` (length: fpn_levels) stores the assigned
        # gt index of each anchor bbox in each fpn level.
        cum_num_gts = list(np.cumsum(num_gts))  # length of batch_size
        for i, assign in enumerate(pos_assigned_gt_inds_list):
            # loop over fpn levels
            for j in range(1, batch_size):
                # loop over batch size
                # Convert gt indices in each img to those in the batch
                assign[j][assign[j] >= 0] += int(cum_num_gts[j - 1])
            pos_assigned_gt_inds_list[i] = assign.flatten()
            labels_list[i] = labels_list[i].flatten()
        num_gts = sum(map(len, gt_labels))  # total number of gt in the batch
        # The unique label index of each gt in the batch
        label_sequence = torch.arange(num_gts, device=device)
        # Collect the average loss of each gt in each level
        with torch.no_grad():
            loss_levels, = multi_apply(
                self.collect_loss_level_single,
                losses_cls,
                losses_bbox,
                pos_assigned_gt_inds_list,
                labels_seq=label_sequence)
            # Shape: (fpn_levels, num_gts). Loss of each gt at each fpn level
            loss_levels = torch.stack(loss_levels, dim=0)
            # Locate the best fpn level for loss back-propagation
            if loss_levels.numel() == 0:  # zero gt
                argmin = loss_levels.new_empty((num_gts, ), dtype=torch.long)
            else:
                _, argmin = loss_levels.min(dim=0)

        # Reweight the loss of each (anchor, label) pair, so that only those
        #  at the best gt level are back-propagated.
        losses_cls, losses_bbox, pos_inds = multi_apply(
            self.reweight_loss_single,
            losses_cls,
            losses_bbox,
            pos_assigned_gt_inds_list,
            labels_list,
            list(range(len(losses_cls))),
            min_levels=argmin)
        num_pos = torch.cat(pos_inds, 0).sum().float()
        pos_recall = self.calculate_pos_recall(cls_scores, labels_list,
                                               pos_inds)

        if num_pos == 0:  # No gt
            avg_factor = num_pos + float(num_total_neg)
        else:
            avg_factor = num_pos
        for i in range(len(losses_cls)):
            losses_cls[i] /= avg_factor
            losses_bbox[i] /= avg_factor
        return dict(
            loss_cls=losses_cls,
            loss_bbox=losses_bbox,
            num_pos=num_pos / batch_size,
            pos_recall=pos_recall)

    def calculate_pos_recall(self, cls_scores, labels_list, pos_inds):
        """Calculate positive recall with score threshold.

        Args:
            cls_scores (list[Tensor]): Classification scores at all fpn levels.
                Each tensor is in shape (N, num_classes * num_anchors, H, W)
            labels_list (list[Tensor]): The label that each anchor is assigned
                to. Shape (N * H * W * num_anchors, )
            pos_inds (list[Tensor]): List of bool tensors indicating whether
                the anchor is assigned to a positive label.
                Shape (N * H * W * num_anchors, )

        Returns:
            Tensor: A single float number indicating the positive recall.
        """
        with torch.no_grad():
            num_class = self.num_classes
            scores = [
                cls.permute(0, 2, 3, 1).reshape(-1, num_class)[pos]
                for cls, pos in zip(cls_scores, pos_inds)
            ]
            labels = [
                label.reshape(-1)[pos]
                for label, pos in zip(labels_list, pos_inds)
            ]
            scores = torch.cat(scores, dim=0)
            labels = torch.cat(labels, dim=0)
            if self.use_sigmoid_cls:
                scores = scores.sigmoid()
            else:
                scores = scores.softmax(dim=1)

            return accuracy(scores, labels, thresh=self.score_threshold)

    def collect_loss_level_single(self, cls_loss, reg_loss, assigned_gt_inds,
                                  labels_seq):
        """Get the average loss in each FPN level w.r.t. each gt label.

        Args:
            cls_loss (Tensor): Classification loss of each feature map pixel,
              shape (num_anchor, num_class)
            reg_loss (Tensor): Regression loss of each feature map pixel,
              shape (num_anchor, 4)
            assigned_gt_inds (Tensor): It indicates which gt the prior is
              assigned to (0-based, -1: no assignment). shape (num_anchor),
            labels_seq: The rank of labels. shape (num_gt)

        Returns:
            shape: (num_gt), average loss of each gt in this level
        """
        if len(reg_loss.shape) == 2:  # iou loss has shape (num_prior, 4)
            reg_loss = reg_loss.sum(dim=-1)  # sum loss in tblr dims
        if len(cls_loss.shape) == 2:
            cls_loss = cls_loss.sum(dim=-1)  # sum loss in class dims
        loss = cls_loss + reg_loss
        assert loss.size(0) == assigned_gt_inds.size(0)
        # Default loss value is 1e6 for a layer where no anchor is positive
        #  to ensure it will not be chosen to back-propagate gradient
        losses_ = loss.new_full(labels_seq.shape, 1e6)
        for i, l in enumerate(labels_seq):
            match = assigned_gt_inds == l
            if match.any():
                losses_[i] = loss[match].mean()
        return losses_,

    def reweight_loss_single(self, cls_loss, reg_loss, assigned_gt_inds,
                             labels, level, min_levels):
        """Reweight loss values at each level.

        Reassign loss values at each level by masking those where the
        pre-calculated loss is too large. Then return the reduced losses.

        Args:
            cls_loss (Tensor): Element-wise classification loss.
              Shape: (num_anchors, num_classes)
            reg_loss (Tensor): Element-wise regression loss.
              Shape: (num_anchors, 4)
            assigned_gt_inds (Tensor): The gt indices that each anchor bbox
              is assigned to. -1 denotes a negative anchor, otherwise it is the
              gt index (0-based). Shape: (num_anchors, ),
            labels (Tensor): Label assigned to anchors. Shape: (num_anchors, ).
            level (int): The current level index in the pyramid
              (0-4 for RetinaNet)
            min_levels (Tensor): The best-matching level for each gt.
              Shape: (num_gts, ),

        Returns:
            tuple:
                - cls_loss: Reduced corrected classification loss. Scalar.
                - reg_loss: Reduced corrected regression loss. Scalar.
                - pos_flags (Tensor): Corrected bool tensor indicating the
                  final positive anchors. Shape: (num_anchors, ).
        """
        loc_weight = torch.ones_like(reg_loss)
        cls_weight = torch.ones_like(cls_loss)
        pos_flags = assigned_gt_inds >= 0  # positive pixel flag
        pos_indices = torch.nonzero(pos_flags, as_tuple=False).flatten()

        if pos_flags.any():  # pos pixels exist
            pos_assigned_gt_inds = assigned_gt_inds[pos_flags]
            zeroing_indices = (min_levels[pos_assigned_gt_inds] != level)
            neg_indices = pos_indices[zeroing_indices]

            if neg_indices.numel():
                pos_flags[neg_indices] = 0
                loc_weight[neg_indices] = 0
                # Only the weight corresponding to the label is
                #  zeroed out if not selected
                zeroing_labels = labels[neg_indices]
                assert (zeroing_labels >= 0).all()
                cls_weight[neg_indices, zeroing_labels] = 0

        # Weighted loss for both cls and reg loss
        cls_loss = weight_reduce_loss(cls_loss, cls_weight, reduction='sum')
        reg_loss = weight_reduce_loss(reg_loss, loc_weight, reduction='sum')

        return cls_loss, reg_loss, pos_flags