File size: 11,148 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import torch
import torch.nn.functional as F

from mmdet.core import bbox_overlaps
from ..builder import HEADS
from .retina_head import RetinaHead

EPS = 1e-12


@HEADS.register_module()
class FreeAnchorRetinaHead(RetinaHead):
    """FreeAnchor RetinaHead used in https://arxiv.org/abs/1909.02466.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        stacked_convs (int): Number of conv layers in cls and reg tower.
            Default: 4.
        conv_cfg (dict): dictionary to construct and config conv layer.
            Default: None.
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: norm_cfg=dict(type='GN', num_groups=32,
            requires_grad=True).
        pre_anchor_topk (int): Number of boxes that be token in each bag.
        bbox_thr (float): The threshold of the saturated linear function. It is
            usually the same with the IoU threshold used in NMS.
        gamma (float): Gamma parameter in focal loss.
        alpha (float): Alpha parameter in focal loss.
    """  # noqa: W605

    def __init__(self,
                 num_classes,
                 in_channels,
                 stacked_convs=4,
                 conv_cfg=None,
                 norm_cfg=None,
                 pre_anchor_topk=50,
                 bbox_thr=0.6,
                 gamma=2.0,
                 alpha=0.5,
                 **kwargs):
        super(FreeAnchorRetinaHead,
              self).__init__(num_classes, in_channels, stacked_convs, conv_cfg,
                             norm_cfg, **kwargs)

        self.pre_anchor_topk = pre_anchor_topk
        self.bbox_thr = bbox_thr
        self.gamma = gamma
        self.alpha = alpha

    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == len(self.anchor_generator.base_anchors)

        anchor_list, _ = self.get_anchors(featmap_sizes, img_metas)
        anchors = [torch.cat(anchor) for anchor in anchor_list]

        # concatenate each level
        cls_scores = [
            cls.permute(0, 2, 3,
                        1).reshape(cls.size(0), -1, self.cls_out_channels)
            for cls in cls_scores
        ]
        bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(bbox_pred.size(0), -1, 4)
            for bbox_pred in bbox_preds
        ]
        cls_scores = torch.cat(cls_scores, dim=1)
        bbox_preds = torch.cat(bbox_preds, dim=1)

        cls_prob = torch.sigmoid(cls_scores)
        box_prob = []
        num_pos = 0
        positive_losses = []
        for _, (anchors_, gt_labels_, gt_bboxes_, cls_prob_,
                bbox_preds_) in enumerate(
                    zip(anchors, gt_labels, gt_bboxes, cls_prob, bbox_preds)):

            with torch.no_grad():
                if len(gt_bboxes_) == 0:
                    image_box_prob = torch.zeros(
                        anchors_.size(0),
                        self.cls_out_channels).type_as(bbox_preds_)
                else:
                    # box_localization: a_{j}^{loc}, shape: [j, 4]
                    pred_boxes = self.bbox_coder.decode(anchors_, bbox_preds_)

                    # object_box_iou: IoU_{ij}^{loc}, shape: [i, j]
                    object_box_iou = bbox_overlaps(gt_bboxes_, pred_boxes)

                    # object_box_prob: P{a_{j} -> b_{i}}, shape: [i, j]
                    t1 = self.bbox_thr
                    t2 = object_box_iou.max(
                        dim=1, keepdim=True).values.clamp(min=t1 + 1e-12)
                    object_box_prob = ((object_box_iou - t1) /
                                       (t2 - t1)).clamp(
                                           min=0, max=1)

                    # object_cls_box_prob: P{a_{j} -> b_{i}}, shape: [i, c, j]
                    num_obj = gt_labels_.size(0)
                    indices = torch.stack([
                        torch.arange(num_obj).type_as(gt_labels_), gt_labels_
                    ],
                                          dim=0)
                    object_cls_box_prob = torch.sparse_coo_tensor(
                        indices, object_box_prob)

                    # image_box_iou: P{a_{j} \in A_{+}}, shape: [c, j]
                    """
                    from "start" to "end" implement:
                    image_box_iou = torch.sparse.max(object_cls_box_prob,
                                                     dim=0).t()

                    """
                    # start
                    box_cls_prob = torch.sparse.sum(
                        object_cls_box_prob, dim=0).to_dense()

                    indices = torch.nonzero(box_cls_prob, as_tuple=False).t_()
                    if indices.numel() == 0:
                        image_box_prob = torch.zeros(
                            anchors_.size(0),
                            self.cls_out_channels).type_as(object_box_prob)
                    else:
                        nonzero_box_prob = torch.where(
                            (gt_labels_.unsqueeze(dim=-1) == indices[0]),
                            object_box_prob[:, indices[1]],
                            torch.tensor([
                                0
                            ]).type_as(object_box_prob)).max(dim=0).values

                        # upmap to shape [j, c]
                        image_box_prob = torch.sparse_coo_tensor(
                            indices.flip([0]),
                            nonzero_box_prob,
                            size=(anchors_.size(0),
                                  self.cls_out_channels)).to_dense()
                    # end

                box_prob.append(image_box_prob)

            # construct bags for objects
            match_quality_matrix = bbox_overlaps(gt_bboxes_, anchors_)
            _, matched = torch.topk(
                match_quality_matrix,
                self.pre_anchor_topk,
                dim=1,
                sorted=False)
            del match_quality_matrix

            # matched_cls_prob: P_{ij}^{cls}
            matched_cls_prob = torch.gather(
                cls_prob_[matched], 2,
                gt_labels_.view(-1, 1, 1).repeat(1, self.pre_anchor_topk,
                                                 1)).squeeze(2)

            # matched_box_prob: P_{ij}^{loc}
            matched_anchors = anchors_[matched]
            matched_object_targets = self.bbox_coder.encode(
                matched_anchors,
                gt_bboxes_.unsqueeze(dim=1).expand_as(matched_anchors))
            loss_bbox = self.loss_bbox(
                bbox_preds_[matched],
                matched_object_targets,
                reduction_override='none').sum(-1)
            matched_box_prob = torch.exp(-loss_bbox)

            # positive_losses: {-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )}
            num_pos += len(gt_bboxes_)
            positive_losses.append(
                self.positive_bag_loss(matched_cls_prob, matched_box_prob))
        positive_loss = torch.cat(positive_losses).sum() / max(1, num_pos)

        # box_prob: P{a_{j} \in A_{+}}
        box_prob = torch.stack(box_prob, dim=0)

        # negative_loss:
        # \sum_{j}{ FL((1 - P{a_{j} \in A_{+}}) * (1 - P_{j}^{bg})) } / n||B||
        negative_loss = self.negative_bag_loss(cls_prob, box_prob).sum() / max(
            1, num_pos * self.pre_anchor_topk)

        # avoid the absence of gradients in regression subnet
        # when no ground-truth in a batch
        if num_pos == 0:
            positive_loss = bbox_preds.sum() * 0

        losses = {
            'positive_bag_loss': positive_loss,
            'negative_bag_loss': negative_loss
        }
        return losses

    def positive_bag_loss(self, matched_cls_prob, matched_box_prob):
        """Compute positive bag loss.

        :math:`-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )`.

        :math:`P_{ij}^{cls}`: matched_cls_prob, classification probability of matched samples.

        :math:`P_{ij}^{loc}`: matched_box_prob, box probability of matched samples.

        Args:
            matched_cls_prob (Tensor): Classification probabilty of matched
                samples in shape (num_gt, pre_anchor_topk).
            matched_box_prob (Tensor): BBox probability of matched samples,
                in shape (num_gt, pre_anchor_topk).

        Returns:
            Tensor: Positive bag loss in shape (num_gt,).
        """  # noqa: E501, W605
        # bag_prob = Mean-max(matched_prob)
        matched_prob = matched_cls_prob * matched_box_prob
        weight = 1 / torch.clamp(1 - matched_prob, 1e-12, None)
        weight /= weight.sum(dim=1).unsqueeze(dim=-1)
        bag_prob = (weight * matched_prob).sum(dim=1)
        # positive_bag_loss = -self.alpha * log(bag_prob)
        return self.alpha * F.binary_cross_entropy(
            bag_prob, torch.ones_like(bag_prob), reduction='none')

    def negative_bag_loss(self, cls_prob, box_prob):
        """Compute negative bag loss.

        :math:`FL((1 - P_{a_{j} \in A_{+}}) * (1 - P_{j}^{bg}))`.

        :math:`P_{a_{j} \in A_{+}}`: Box_probability of matched samples.

        :math:`P_{j}^{bg}`: Classification probability of negative samples.

        Args:
            cls_prob (Tensor): Classification probability, in shape
                (num_img, num_anchors, num_classes).
            box_prob (Tensor): Box probability, in shape
                (num_img, num_anchors, num_classes).

        Returns:
            Tensor: Negative bag loss in shape (num_img, num_anchors, num_classes).
        """  # noqa: E501, W605
        prob = cls_prob * (1 - box_prob)
        # There are some cases when neg_prob = 0.
        # This will cause the neg_prob.log() to be inf without clamp.
        prob = prob.clamp(min=EPS, max=1 - EPS)
        negative_bag_loss = prob**self.gamma * F.binary_cross_entropy(
            prob, torch.zeros_like(prob), reduction='none')
        return (1 - self.alpha) * negative_bag_loss