File size: 28,339 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Scale, normal_init
from mmcv.runner import force_fp32

from mmdet.core import distance2bbox, multi_apply, multiclass_nms, reduce_mean
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead

INF = 1e8


@HEADS.register_module()
class FCOSHead(AnchorFreeHead):
    """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.

    The FCOS head does not use anchor boxes. Instead bounding boxes are
    predicted at each pixel and a centerness measure is used to suppress
    low-quality predictions.
    Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
    tricks used in official repo, which will bring remarkable mAP gains
    of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
    more detail.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        strides (list[int] | list[tuple[int, int]]): Strides of points
            in multiple feature levels. Default: (4, 8, 16, 32, 64).
        regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
            level points.
        center_sampling (bool): If true, use center sampling. Default: False.
        center_sample_radius (float): Radius of center sampling. Default: 1.5.
        norm_on_bbox (bool): If true, normalize the regression targets
            with FPN strides. Default: False.
        centerness_on_reg (bool): If true, position centerness on the
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Default: False.
        conv_bias (bool | str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise
            False. Default: "auto".
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_centerness (dict): Config of centerness loss.
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).

    Example:
        >>> self = FCOSHead(11, 7)
        >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
        >>> cls_score, bbox_pred, centerness = self.forward(feats)
        >>> assert len(cls_score) == len(self.scales)
    """  # noqa: E501

    def __init__(self,
                 num_classes,
                 in_channels,
                 regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
                                 (512, INF)),
                 center_sampling=False,
                 center_sample_radius=1.5,
                 norm_on_bbox=False,
                 centerness_on_reg=False,
                 loss_cls=dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox=dict(type='IoULoss', loss_weight=1.0),
                 loss_centerness=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
                 **kwargs):
        self.regress_ranges = regress_ranges
        self.center_sampling = center_sampling
        self.center_sample_radius = center_sample_radius
        self.norm_on_bbox = norm_on_bbox
        self.centerness_on_reg = centerness_on_reg
        super().__init__(
            num_classes,
            in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            norm_cfg=norm_cfg,
            **kwargs)
        self.loss_centerness = build_loss(loss_centerness)

    def _init_layers(self):
        """Initialize layers of the head."""
        super()._init_layers()
        self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])

    def init_weights(self):
        """Initialize weights of the head."""
        super().init_weights()
        normal_init(self.conv_centerness, std=0.01)

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level, \
                    each is a 4D-tensor, the channel number is \
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each \
                    scale level, each is a 4D-tensor, the channel number is \
                    num_points * 4.
                centernesses (list[Tensor]): centerness for each scale level, \
                    each is a 4D-tensor, the channel number is num_points * 1.
        """
        return multi_apply(self.forward_single, feats, self.scales,
                           self.strides)

    def forward_single(self, x, scale, stride):
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
            tuple: scores for each class, bbox predictions and centerness \
                predictions of input feature maps.
        """
        cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
        if self.centerness_on_reg:
            centerness = self.conv_centerness(reg_feat)
        else:
            centerness = self.conv_centerness(cls_feat)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        if self.norm_on_bbox:
            bbox_pred = F.relu(bbox_pred)
            if not self.training:
                bbox_pred *= stride
        else:
            bbox_pred = bbox_pred.exp()
        return cls_score, bbox_pred, centerness

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             centernesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * 4.
            centernesses (list[Tensor]): centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                           bbox_preds[0].device)
        labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes,
                                                gt_labels)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels = torch.cat(labels)
        flatten_bbox_targets = torch.cat(bbox_targets)
        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels >= 0)
                    & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
        num_pos = torch.tensor(
            len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
        num_pos = max(reduce_mean(num_pos), 1.0)
        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos)

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]

        if len(pos_inds) > 0:
            pos_bbox_targets = flatten_bbox_targets[pos_inds]
            pos_centerness_targets = self.centerness_target(pos_bbox_targets)
            pos_points = flatten_points[pos_inds]
            pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
            pos_decoded_target_preds = distance2bbox(pos_points,
                                                     pos_bbox_targets)
            # centerness weighted iou loss
            centerness_denorm = max(
                reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)
            loss_bbox = self.loss_bbox(
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
                weight=pos_centerness_targets,
                avg_factor=centerness_denorm)
            loss_centerness = self.loss_centerness(
                pos_centerness, pos_centerness_targets, avg_factor=num_pos)
        else:
            loss_bbox = pos_bbox_preds.sum()
            loss_centerness = pos_centerness.sum()

        return dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_centerness=loss_centerness)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   centernesses,
                   img_metas,
                   cfg=None,
                   rescale=False,
                   with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                with shape (N, num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_points * 4, H, W).
            centernesses (list[Tensor]): Centerness for each scale level with
                shape (N, num_points * 1, H, W).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cfg (mmcv.Config | None): Test / postprocessing configuration,
                if None, test_cfg would be used. Default: None.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where 5 represent
                (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
                The shape of the second tensor in the tuple is (n,), and
                each element represents the class label of the corresponding
                box.
        """
        assert len(cls_scores) == len(bbox_preds)
        num_levels = len(cls_scores)

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                      bbox_preds[0].device)

        cls_score_list = [cls_scores[i].detach() for i in range(num_levels)]
        bbox_pred_list = [bbox_preds[i].detach() for i in range(num_levels)]
        centerness_pred_list = [
            centernesses[i].detach() for i in range(num_levels)
        ]
        if torch.onnx.is_in_onnx_export():
            assert len(
                img_metas
            ) == 1, 'Only support one input image while in exporting to ONNX'
            img_shapes = img_metas[0]['img_shape_for_onnx']
        else:
            img_shapes = [
                img_metas[i]['img_shape']
                for i in range(cls_scores[0].shape[0])
            ]
        scale_factors = [
            img_metas[i]['scale_factor'] for i in range(cls_scores[0].shape[0])
        ]
        result_list = self._get_bboxes(cls_score_list, bbox_pred_list,
                                       centerness_pred_list, mlvl_points,
                                       img_shapes, scale_factors, cfg, rescale,
                                       with_nms)
        return result_list

    def _get_bboxes(self,
                    cls_scores,
                    bbox_preds,
                    centernesses,
                    mlvl_points,
                    img_shapes,
                    scale_factors,
                    cfg,
                    rescale=False,
                    with_nms=True):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for a single scale level
                with shape (N, num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for a single scale
                level with shape (N, num_points * 4, H, W).
            centernesses (list[Tensor]): Centerness for a single scale level
                with shape (N, num_points * 4, H, W).
            mlvl_points (list[Tensor]): Box reference for a single scale level
                with shape (num_total_points, 4).
            img_shapes (list[tuple[int]]): Shape of the input image,
                list[(height, width, 3)].
            scale_factors (list[ndarray]): Scale factor of the image arrange as
                (w_scale, h_scale, w_scale, h_scale).
            cfg (mmcv.Config | None): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            tuple(Tensor):
                det_bboxes (Tensor): BBox predictions in shape (n, 5), where
                    the first 4 columns are bounding box positions
                    (tl_x, tl_y, br_x, br_y) and the 5-th column is a score
                    between 0 and 1.
                det_labels (Tensor): A (n,) tensor where each item is the
                    predicted class label of the corresponding box.
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
        device = cls_scores[0].device
        batch_size = cls_scores[0].shape[0]
        # convert to tensor to keep tracing
        nms_pre_tensor = torch.tensor(
            cfg.get('nms_pre', -1), device=device, dtype=torch.long)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_centerness = []
        for cls_score, bbox_pred, centerness, points in zip(
                cls_scores, bbox_preds, centernesses, mlvl_points):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            scores = cls_score.permute(0, 2, 3, 1).reshape(
                batch_size, -1, self.cls_out_channels).sigmoid()
            centerness = centerness.permute(0, 2, 3,
                                            1).reshape(batch_size,
                                                       -1).sigmoid()

            bbox_pred = bbox_pred.permute(0, 2, 3,
                                          1).reshape(batch_size, -1, 4)
            # Always keep topk op for dynamic input in onnx
            if nms_pre_tensor > 0 and (torch.onnx.is_in_onnx_export()
                                       or scores.shape[-2] > nms_pre_tensor):
                from torch import _shape_as_tensor
                # keep shape as tensor and get k
                num_anchor = _shape_as_tensor(scores)[-2].to(device)
                nms_pre = torch.where(nms_pre_tensor < num_anchor,
                                      nms_pre_tensor, num_anchor)

                max_scores, _ = (scores * centerness[..., None]).max(-1)
                _, topk_inds = max_scores.topk(nms_pre)
                points = points[topk_inds, :]
                batch_inds = torch.arange(batch_size).view(
                    -1, 1).expand_as(topk_inds).long()
                bbox_pred = bbox_pred[batch_inds, topk_inds, :]
                scores = scores[batch_inds, topk_inds, :]
                centerness = centerness[batch_inds, topk_inds]

            bboxes = distance2bbox(points, bbox_pred, max_shape=img_shapes)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_centerness.append(centerness)

        batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1)
        if rescale:
            batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor(
                scale_factors).unsqueeze(1)
        batch_mlvl_scores = torch.cat(mlvl_scores, dim=1)
        batch_mlvl_centerness = torch.cat(mlvl_centerness, dim=1)

        # Set max number of box to be feed into nms in deployment
        deploy_nms_pre = cfg.get('deploy_nms_pre', -1)
        if deploy_nms_pre > 0 and torch.onnx.is_in_onnx_export():
            batch_mlvl_scores, _ = (
                batch_mlvl_scores *
                batch_mlvl_centerness.unsqueeze(2).expand_as(batch_mlvl_scores)
            ).max(-1)
            _, topk_inds = batch_mlvl_scores.topk(deploy_nms_pre)
            batch_inds = torch.arange(batch_mlvl_scores.shape[0]).view(
                -1, 1).expand_as(topk_inds)
            batch_mlvl_scores = batch_mlvl_scores[batch_inds, topk_inds, :]
            batch_mlvl_bboxes = batch_mlvl_bboxes[batch_inds, topk_inds, :]
            batch_mlvl_centerness = batch_mlvl_centerness[batch_inds,
                                                          topk_inds]

        # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
        # BG cat_id: num_class
        padding = batch_mlvl_scores.new_zeros(batch_size,
                                              batch_mlvl_scores.shape[1], 1)
        batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1)

        if with_nms:
            det_results = []
            for (mlvl_bboxes, mlvl_scores,
                 mlvl_centerness) in zip(batch_mlvl_bboxes, batch_mlvl_scores,
                                         batch_mlvl_centerness):
                det_bbox, det_label = multiclass_nms(
                    mlvl_bboxes,
                    mlvl_scores,
                    cfg.score_thr,
                    cfg.nms,
                    cfg.max_per_img,
                    score_factors=mlvl_centerness)
                det_results.append(tuple([det_bbox, det_label]))
        else:
            det_results = [
                tuple(mlvl_bs)
                for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores,
                                   batch_mlvl_centerness)
            ]
        return det_results

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Get points according to feature map sizes."""
        y, x = super()._get_points_single(featmap_size, stride, dtype, device)
        points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
                             dim=-1) + stride // 2
        return points

    def get_targets(self, points, gt_bboxes_list, gt_labels_list):
        """Compute regression, classification and centerness targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
                each has shape (num_gt, 4).
            gt_labels_list (list[Tensor]): Ground truth labels of each box,
                each has shape (num_gt,).

        Returns:
            tuple:
                concat_lvl_labels (list[Tensor]): Labels of each level. \
                concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
                    level.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # get labels and bbox_targets of each image
        labels_list, bbox_targets_list = multi_apply(
            self._get_target_single,
            gt_bboxes_list,
            gt_labels_list,
            points=concat_points,
            regress_ranges=concat_regress_ranges,
            num_points_per_lvl=num_points)

        # split to per img, per level
        labels_list = [labels.split(num_points, 0) for labels in labels_list]
        bbox_targets_list = [
            bbox_targets.split(num_points, 0)
            for bbox_targets in bbox_targets_list
        ]

        # concat per level image
        concat_lvl_labels = []
        concat_lvl_bbox_targets = []
        for i in range(num_levels):
            concat_lvl_labels.append(
                torch.cat([labels[i] for labels in labels_list]))
            bbox_targets = torch.cat(
                [bbox_targets[i] for bbox_targets in bbox_targets_list])
            if self.norm_on_bbox:
                bbox_targets = bbox_targets / self.strides[i]
            concat_lvl_bbox_targets.append(bbox_targets)
        return concat_lvl_labels, concat_lvl_bbox_targets

    def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges,
                           num_points_per_lvl):
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
        num_gts = gt_labels.size(0)
        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.num_classes), \
                   gt_bboxes.new_zeros((num_points, 4))

        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        # TODO: figure out why these two are different
        # areas = areas[None].expand(num_points, num_gts)
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        if self.center_sampling:
            # condition1: inside a `center bbox`
            radius = self.center_sample_radius
            center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
            center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
            center_gts = torch.zeros_like(gt_bboxes)
            stride = center_xs.new_zeros(center_xs.shape)

            # project the points on current lvl back to the `original` sizes
            lvl_begin = 0
            for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
                lvl_end = lvl_begin + num_points_lvl
                stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
                lvl_begin = lvl_end

            x_mins = center_xs - stride
            y_mins = center_ys - stride
            x_maxs = center_xs + stride
            y_maxs = center_ys + stride
            center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
                                             x_mins, gt_bboxes[..., 0])
            center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
                                             y_mins, gt_bboxes[..., 1])
            center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
                                             gt_bboxes[..., 2], x_maxs)
            center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
                                             gt_bboxes[..., 3], y_maxs)

            cb_dist_left = xs - center_gts[..., 0]
            cb_dist_right = center_gts[..., 2] - xs
            cb_dist_top = ys - center_gts[..., 1]
            cb_dist_bottom = center_gts[..., 3] - ys
            center_bbox = torch.stack(
                (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
            inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
        else:
            # condition1: inside a gt bbox
            inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        areas[inside_gt_bbox_mask == 0] = INF
        areas[inside_regress_range == 0] = INF
        min_area, min_area_inds = areas.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels[min_area == INF] = self.num_classes  # set as BG
        bbox_targets = bbox_targets[range(num_points), min_area_inds]

        return labels, bbox_targets

    def centerness_target(self, pos_bbox_targets):
        """Compute centerness targets.

        Args:
            pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
                (num_pos, 4)

        Returns:
            Tensor: Centerness target.
        """
        # only calculate pos centerness targets, otherwise there may be nan
        left_right = pos_bbox_targets[:, [0, 2]]
        top_bottom = pos_bbox_targets[:, [1, 3]]
        centerness_targets = (
            left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
                top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness_targets)