File size: 32,988 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
from __future__ import division
import copy
import warnings

import torch
import torch.nn as nn
from mmcv import ConfigDict
from mmcv.cnn import normal_init
from mmcv.ops import DeformConv2d, batched_nms

from mmdet.core import (RegionAssigner, build_assigner, build_sampler,
                        images_to_levels, multi_apply)
from ..builder import HEADS, build_head
from .base_dense_head import BaseDenseHead
from .rpn_head import RPNHead


class AdaptiveConv(nn.Module):
    """AdaptiveConv used to adapt the sampling location with the anchors.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the conv kernel. Default: 3
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of
            the input. Default: 1
        dilation (int or tuple, optional): Spacing between kernel elements.
            Default: 3
        groups (int, optional): Number of blocked connections from input
            channels to output channels. Default: 1
        bias (bool, optional): If set True, adds a learnable bias to the
            output. Default: False.
        type (str, optional): Type of adaptive conv, can be either 'offset'
            (arbitrary anchors) or 'dilation' (uniform anchor).
            Default: 'dilation'.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=1,
                 dilation=3,
                 groups=1,
                 bias=False,
                 type='dilation'):
        super(AdaptiveConv, self).__init__()
        assert type in ['offset', 'dilation']
        self.adapt_type = type

        assert kernel_size == 3, 'Adaptive conv only supports kernels 3'
        if self.adapt_type == 'offset':
            assert stride == 1 and padding == 1 and groups == 1, \
                'Adaptive conv offset mode only supports padding: {1}, ' \
                f'stride: {1}, groups: {1}'
            self.conv = DeformConv2d(
                in_channels,
                out_channels,
                kernel_size,
                padding=padding,
                stride=stride,
                groups=groups,
                bias=bias)
        else:
            self.conv = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                padding=dilation,
                dilation=dilation)

    def init_weights(self):
        """Init weights."""
        normal_init(self.conv, std=0.01)

    def forward(self, x, offset):
        """Forward function."""
        if self.adapt_type == 'offset':
            N, _, H, W = x.shape
            assert offset is not None
            assert H * W == offset.shape[1]
            # reshape [N, NA, 18] to (N, 18, H, W)
            offset = offset.permute(0, 2, 1).reshape(N, -1, H, W)
            offset = offset.contiguous()
            x = self.conv(x, offset)
        else:
            assert offset is None
            x = self.conv(x)
        return x


@HEADS.register_module()
class StageCascadeRPNHead(RPNHead):
    """Stage of CascadeRPNHead.

    Args:
        in_channels (int): Number of channels in the input feature map.
        anchor_generator (dict): anchor generator config.
        adapt_cfg (dict): adaptation config.
        bridged_feature (bool, optional): whether update rpn feature.
            Default: False.
        with_cls (bool, optional): wheather use classification branch.
            Default: True.
        sampling (bool, optional): wheather use sampling. Default: True.
    """

    def __init__(self,
                 in_channels,
                 anchor_generator=dict(
                     type='AnchorGenerator',
                     scales=[8],
                     ratios=[1.0],
                     strides=[4, 8, 16, 32, 64]),
                 adapt_cfg=dict(type='dilation', dilation=3),
                 bridged_feature=False,
                 with_cls=True,
                 sampling=True,
                 **kwargs):
        self.with_cls = with_cls
        self.anchor_strides = anchor_generator['strides']
        self.anchor_scales = anchor_generator['scales']
        self.bridged_feature = bridged_feature
        self.adapt_cfg = adapt_cfg
        super(StageCascadeRPNHead, self).__init__(
            in_channels, anchor_generator=anchor_generator, **kwargs)

        # override sampling and sampler
        self.sampling = sampling
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # use PseudoSampler when sampling is False
            if self.sampling and hasattr(self.train_cfg, 'sampler'):
                sampler_cfg = self.train_cfg.sampler
            else:
                sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)

    def _init_layers(self):
        """Init layers of a CascadeRPN stage."""
        self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels,
                                     **self.adapt_cfg)
        if self.with_cls:
            self.rpn_cls = nn.Conv2d(self.feat_channels,
                                     self.num_anchors * self.cls_out_channels,
                                     1)
        self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
        self.relu = nn.ReLU(inplace=True)

    def init_weights(self):
        """Init weights of a CascadeRPN stage."""
        self.rpn_conv.init_weights()
        normal_init(self.rpn_reg, std=0.01)
        if self.with_cls:
            normal_init(self.rpn_cls, std=0.01)

    def forward_single(self, x, offset):
        """Forward function of single scale."""
        bridged_x = x
        x = self.relu(self.rpn_conv(x, offset))
        if self.bridged_feature:
            bridged_x = x  # update feature
        cls_score = self.rpn_cls(x) if self.with_cls else None
        bbox_pred = self.rpn_reg(x)
        return bridged_x, cls_score, bbox_pred

    def forward(self, feats, offset_list=None):
        """Forward function."""
        if offset_list is None:
            offset_list = [None for _ in range(len(feats))]
        return multi_apply(self.forward_single, feats, offset_list)

    def _region_targets_single(self,
                               anchors,
                               valid_flags,
                               gt_bboxes,
                               gt_bboxes_ignore,
                               gt_labels,
                               img_meta,
                               featmap_sizes,
                               label_channels=1):
        """Get anchor targets based on region for single level."""
        assign_result = self.assigner.assign(
            anchors,
            valid_flags,
            gt_bboxes,
            img_meta,
            featmap_sizes,
            self.anchor_scales[0],
            self.anchor_strides,
            gt_bboxes_ignore=gt_bboxes_ignore,
            gt_labels=None,
            allowed_border=self.train_cfg.allowed_border)
        flat_anchors = torch.cat(anchors)
        sampling_result = self.sampler.sample(assign_result, flat_anchors,
                                              gt_bboxes)

        num_anchors = flat_anchors.shape[0]
        bbox_targets = torch.zeros_like(flat_anchors)
        bbox_weights = torch.zeros_like(flat_anchors)
        labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long)
        label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    def region_targets(self,
                       anchor_list,
                       valid_flag_list,
                       gt_bboxes_list,
                       img_metas,
                       featmap_sizes,
                       gt_bboxes_ignore_list=None,
                       gt_labels_list=None,
                       label_channels=1,
                       unmap_outputs=True):
        """See :func:`StageCascadeRPNHead.get_targets`."""
        num_imgs = len(img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]
        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         pos_inds_list, neg_inds_list) = multi_apply(
             self._region_targets_single,
             anchor_list,
             valid_flag_list,
             gt_bboxes_list,
             gt_bboxes_ignore_list,
             gt_labels_list,
             img_metas,
             featmap_sizes=featmap_sizes,
             label_channels=label_channels)
        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def get_targets(self,
                    anchor_list,
                    valid_flag_list,
                    gt_bboxes,
                    img_metas,
                    featmap_sizes,
                    gt_bboxes_ignore=None,
                    label_channels=1):
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
            valid_flag_list (list[list]): Multi level valid flags of each
                image.
            gt_bboxes (list[Tensor]): Ground truth bboxes of each image.
            img_metas (list[dict]): Meta info of each image.
            featmap_sizes (list[Tensor]): Feature mapsize each level
            gt_bboxes_ignore (list[Tensor]): Ignore bboxes of each images
            label_channels (int): Channel of label.

        Returns:
            cls_reg_targets (tuple)
        """
        if isinstance(self.assigner, RegionAssigner):
            cls_reg_targets = self.region_targets(
                anchor_list,
                valid_flag_list,
                gt_bboxes,
                img_metas,
                featmap_sizes,
                gt_bboxes_ignore_list=gt_bboxes_ignore,
                label_channels=label_channels)
        else:
            cls_reg_targets = super(StageCascadeRPNHead, self).get_targets(
                anchor_list,
                valid_flag_list,
                gt_bboxes,
                img_metas,
                gt_bboxes_ignore_list=gt_bboxes_ignore,
                label_channels=label_channels)
        return cls_reg_targets

    def anchor_offset(self, anchor_list, anchor_strides, featmap_sizes):
        """ Get offest for deformable conv based on anchor shape
        NOTE: currently support deformable kernel_size=3 and dilation=1

        Args:
            anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of
                multi-level anchors
            anchor_strides (list[int]): anchor stride of each level

        Returns:
            offset_list (list[tensor]): [NLVL, NA, 2, 18]: offset of DeformConv
                kernel.
        """

        def _shape_offset(anchors, stride, ks=3, dilation=1):
            # currently support kernel_size=3 and dilation=1
            assert ks == 3 and dilation == 1
            pad = (ks - 1) // 2
            idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device)
            yy, xx = torch.meshgrid(idx, idx)  # return order matters
            xx = xx.reshape(-1)
            yy = yy.reshape(-1)
            w = (anchors[:, 2] - anchors[:, 0]) / stride
            h = (anchors[:, 3] - anchors[:, 1]) / stride
            w = w / (ks - 1) - dilation
            h = h / (ks - 1) - dilation
            offset_x = w[:, None] * xx  # (NA, ks**2)
            offset_y = h[:, None] * yy  # (NA, ks**2)
            return offset_x, offset_y

        def _ctr_offset(anchors, stride, featmap_size):
            feat_h, feat_w = featmap_size
            assert len(anchors) == feat_h * feat_w

            x = (anchors[:, 0] + anchors[:, 2]) * 0.5
            y = (anchors[:, 1] + anchors[:, 3]) * 0.5
            # compute centers on feature map
            x = x / stride
            y = y / stride
            # compute predefine centers
            xx = torch.arange(0, feat_w, device=anchors.device)
            yy = torch.arange(0, feat_h, device=anchors.device)
            yy, xx = torch.meshgrid(yy, xx)
            xx = xx.reshape(-1).type_as(x)
            yy = yy.reshape(-1).type_as(y)

            offset_x = x - xx  # (NA, )
            offset_y = y - yy  # (NA, )
            return offset_x, offset_y

        num_imgs = len(anchor_list)
        num_lvls = len(anchor_list[0])
        dtype = anchor_list[0][0].dtype
        device = anchor_list[0][0].device
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]

        offset_list = []
        for i in range(num_imgs):
            mlvl_offset = []
            for lvl in range(num_lvls):
                c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl],
                                                     anchor_strides[lvl],
                                                     featmap_sizes[lvl])
                s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl],
                                                       anchor_strides[lvl])

                # offset = ctr_offset + shape_offset
                offset_x = s_offset_x + c_offset_x[:, None]
                offset_y = s_offset_y + c_offset_y[:, None]

                # offset order (y0, x0, y1, x2, .., y8, x8, y9, x9)
                offset = torch.stack([offset_y, offset_x], dim=-1)
                offset = offset.reshape(offset.size(0), -1)  # [NA, 2*ks**2]
                mlvl_offset.append(offset)
            offset_list.append(torch.cat(mlvl_offset))  # [totalNA, 2*ks**2]
        offset_list = images_to_levels(offset_list, num_level_anchors)
        return offset_list

    def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples):
        """Loss function on single scale."""
        # classification loss
        if self.with_cls:
            labels = labels.reshape(-1)
            label_weights = label_weights.reshape(-1)
            cls_score = cls_score.permute(0, 2, 3,
                                          1).reshape(-1, self.cls_out_channels)
            loss_cls = self.loss_cls(
                cls_score, labels, label_weights, avg_factor=num_total_samples)
        # regression loss
        bbox_targets = bbox_targets.reshape(-1, 4)
        bbox_weights = bbox_weights.reshape(-1, 4)
        bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            anchors = anchors.reshape(-1, 4)
            bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
        loss_reg = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)
        if self.with_cls:
            return loss_cls, loss_reg
        return None, loss_reg

    def loss(self,
             anchor_list,
             valid_flag_list,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss. Default: None

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds]
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            featmap_sizes,
            gt_bboxes_ignore=gt_bboxes_ignore,
            label_channels=label_channels)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        if self.sampling:
            num_total_samples = num_total_pos + num_total_neg
        else:
            # 200 is hard-coded average factor,
            # which follows guided anchoring.
            num_total_samples = sum([label.numel()
                                     for label in labels_list]) / 200.0

        # change per image, per level anchor_list to per_level, per_image
        mlvl_anchor_list = list(zip(*anchor_list))
        # concat mlvl_anchor_list
        mlvl_anchor_list = [
            torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list
        ]

        losses = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            mlvl_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples)
        if self.with_cls:
            return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1])
        return dict(loss_rpn_reg=losses[1])

    def get_bboxes(self,
                   anchor_list,
                   cls_scores,
                   bbox_preds,
                   img_metas,
                   cfg,
                   rescale=False):
        """Get proposal predict."""
        assert len(cls_scores) == len(bbox_preds)
        num_levels = len(cls_scores)

        result_list = []
        for img_id in range(len(img_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list,
                                                anchor_list[img_id], img_shape,
                                                scale_factor, cfg, rescale)
            result_list.append(proposals)
        return result_list

    def refine_bboxes(self, anchor_list, bbox_preds, img_metas):
        """Refine bboxes through stages."""
        num_levels = len(bbox_preds)
        new_anchor_list = []
        for img_id in range(len(img_metas)):
            mlvl_anchors = []
            for i in range(num_levels):
                bbox_pred = bbox_preds[i][img_id].detach()
                bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
                img_shape = img_metas[img_id]['img_shape']
                bboxes = self.bbox_coder.decode(anchor_list[img_id][i],
                                                bbox_pred, img_shape)
                mlvl_anchors.append(bboxes)
            new_anchor_list.append(mlvl_anchors)
        return new_anchor_list

    # TODO: temporary plan
    def _get_bboxes_single(self,
                           cls_scores,
                           bbox_preds,
                           mlvl_anchors,
                           img_shape,
                           scale_factor,
                           cfg,
                           rescale=False):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (num_anchors * 4, H, W).
            mlvl_anchors (list[Tensor]): Box reference for each scale level
                with shape (num_total_anchors, 4).
            img_shape (tuple[int]): Shape of the input image,
                (height, width, 3).
            scale_factor (ndarray): Scale factor of the image arange as
                (w_scale, h_scale, w_scale, h_scale).
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.

        Returns:
            Tensor: Labeled boxes have the shape of (n,5), where the
                first 4 columns are bounding box positions
                (tl_x, tl_y, br_x, br_y) and the 5-th column is a score
                between 0 and 1.
        """
        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)
        # bboxes from different level should be independent during NMS,
        # level_ids are used as labels for batched NMS to separate them
        level_ids = []
        mlvl_scores = []
        mlvl_bbox_preds = []
        mlvl_valid_anchors = []
        for idx in range(len(cls_scores)):
            rpn_cls_score = cls_scores[idx]
            rpn_bbox_pred = bbox_preds[idx]
            assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
            rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
            if self.use_sigmoid_cls:
                rpn_cls_score = rpn_cls_score.reshape(-1)
                scores = rpn_cls_score.sigmoid()
            else:
                rpn_cls_score = rpn_cls_score.reshape(-1, 2)
                # We set FG labels to [0, num_class-1] and BG label to
                # num_class in RPN head since mmdet v2.5, which is unified to
                # be consistent with other head since mmdet v2.0. In mmdet v2.0
                # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head.
                scores = rpn_cls_score.softmax(dim=1)[:, 0]
            rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            anchors = mlvl_anchors[idx]
            if cfg.nms_pre > 0 and scores.shape[0] > cfg.nms_pre:
                # sort is faster than topk
                # _, topk_inds = scores.topk(cfg.nms_pre)
                if torch.onnx.is_in_onnx_export():
                    # sort op will be converted to TopK in onnx
                    # and k<=3480 in TensorRT
                    _, topk_inds = scores.topk(cfg.nms_pre)
                    scores = scores[topk_inds]
                else:
                    ranked_scores, rank_inds = scores.sort(descending=True)
                    topk_inds = rank_inds[:cfg.nms_pre]
                    scores = ranked_scores[:cfg.nms_pre]
                rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
                anchors = anchors[topk_inds, :]
            mlvl_scores.append(scores)
            mlvl_bbox_preds.append(rpn_bbox_pred)
            mlvl_valid_anchors.append(anchors)
            level_ids.append(
                scores.new_full((scores.size(0), ), idx, dtype=torch.long))

        scores = torch.cat(mlvl_scores)
        anchors = torch.cat(mlvl_valid_anchors)
        rpn_bbox_pred = torch.cat(mlvl_bbox_preds)
        proposals = self.bbox_coder.decode(
            anchors, rpn_bbox_pred, max_shape=img_shape)
        ids = torch.cat(level_ids)

        # Skip nonzero op while exporting to ONNX
        if cfg.min_bbox_size > 0 and (not torch.onnx.is_in_onnx_export()):
            w = proposals[:, 2] - proposals[:, 0]
            h = proposals[:, 3] - proposals[:, 1]
            valid_inds = torch.nonzero(
                (w >= cfg.min_bbox_size)
                & (h >= cfg.min_bbox_size),
                as_tuple=False).squeeze()
            if valid_inds.sum().item() != len(proposals):
                proposals = proposals[valid_inds, :]
                scores = scores[valid_inds]
                ids = ids[valid_inds]

        # deprecate arguments warning
        if 'nms' not in cfg or 'max_num' in cfg or 'nms_thr' in cfg:
            warnings.warn(
                'In rpn_proposal or test_cfg, '
                'nms_thr has been moved to a dict named nms as '
                'iou_threshold, max_num has been renamed as max_per_img, '
                'name of original arguments and the way to specify '
                'iou_threshold of NMS will be deprecated.')
        if 'nms' not in cfg:
            cfg.nms = ConfigDict(dict(type='nms', iou_threshold=cfg.nms_thr))
        if 'max_num' in cfg:
            if 'max_per_img' in cfg:
                assert cfg.max_num == cfg.max_per_img, f'You ' \
                    f'set max_num and ' \
                    f'max_per_img at the same time, but get {cfg.max_num} ' \
                    f'and {cfg.max_per_img} respectively' \
                    'Please delete max_num which will be deprecated.'
            else:
                cfg.max_per_img = cfg.max_num
        if 'nms_thr' in cfg:
            assert cfg.nms.iou_threshold == cfg.nms_thr, f'You set' \
                f' iou_threshold in nms and ' \
                f'nms_thr at the same time, but get' \
                f' {cfg.nms.iou_threshold} and {cfg.nms_thr}' \
                f' respectively. Please delete the nms_thr ' \
                f'which will be deprecated.'

        dets, keep = batched_nms(proposals, scores, ids, cfg.nms)
        return dets[:cfg.max_per_img]


@HEADS.register_module()
class CascadeRPNHead(BaseDenseHead):
    """The CascadeRPNHead will predict more accurate region proposals, which is
    required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN
    consists of a sequence of RPNStage to progressively improve the accuracy of
    the detected proposals.

    More details can be found in ``https://arxiv.org/abs/1909.06720``.

    Args:
        num_stages (int): number of CascadeRPN stages.
        stages (list[dict]): list of configs to build the stages.
        train_cfg (list[dict]): list of configs at training time each stage.
        test_cfg (dict): config at testing time.
    """

    def __init__(self, num_stages, stages, train_cfg, test_cfg):
        super(CascadeRPNHead, self).__init__()
        assert num_stages == len(stages)
        self.num_stages = num_stages
        self.stages = nn.ModuleList()
        for i in range(len(stages)):
            train_cfg_i = train_cfg[i] if train_cfg is not None else None
            stages[i].update(train_cfg=train_cfg_i)
            stages[i].update(test_cfg=test_cfg)
            self.stages.append(build_head(stages[i]))
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

    def init_weights(self):
        """Init weight of CascadeRPN."""
        for i in range(self.num_stages):
            self.stages[i].init_weights()

    def loss(self):
        """loss() is implemented in StageCascadeRPNHead."""
        pass

    def get_bboxes(self):
        """get_bboxes() is implemented in StageCascadeRPNHead."""
        pass

    def forward_train(self,
                      x,
                      img_metas,
                      gt_bboxes,
                      gt_labels=None,
                      gt_bboxes_ignore=None,
                      proposal_cfg=None):
        """Forward train function."""
        assert gt_labels is None, 'RPN does not require gt_labels'

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, valid_flag_list = self.stages[0].get_anchors(
            featmap_sizes, img_metas, device=device)

        losses = dict()

        for i in range(self.num_stages):
            stage = self.stages[i]

            if stage.adapt_cfg['type'] == 'offset':
                offset_list = stage.anchor_offset(anchor_list,
                                                  stage.anchor_strides,
                                                  featmap_sizes)
            else:
                offset_list = None
            x, cls_score, bbox_pred = stage(x, offset_list)
            rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score,
                               bbox_pred, gt_bboxes, img_metas)
            stage_loss = stage.loss(*rpn_loss_inputs)
            for name, value in stage_loss.items():
                losses['s{}.{}'.format(i, name)] = value

            # refine boxes
            if i < self.num_stages - 1:
                anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
                                                  img_metas)
        if proposal_cfg is None:
            return losses
        else:
            proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score,
                                                       bbox_pred, img_metas,
                                                       self.test_cfg)
            return losses, proposal_list

    def simple_test_rpn(self, x, img_metas):
        """Simple forward test function."""
        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, _ = self.stages[0].get_anchors(
            featmap_sizes, img_metas, device=device)

        for i in range(self.num_stages):
            stage = self.stages[i]
            if stage.adapt_cfg['type'] == 'offset':
                offset_list = stage.anchor_offset(anchor_list,
                                                  stage.anchor_strides,
                                                  featmap_sizes)
            else:
                offset_list = None
            x, cls_score, bbox_pred = stage(x, offset_list)
            if i < self.num_stages - 1:
                anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
                                                  img_metas)

        proposal_list = self.stages[-1].get_bboxes(anchor_list, cls_score,
                                                   bbox_pred, img_metas,
                                                   self.test_cfg)
        return proposal_list

    def aug_test_rpn(self, x, img_metas):
        """Augmented forward test function."""
        raise NotImplementedError