File size: 34,480 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import torch
import torch.nn as nn
from mmcv.cnn import normal_init
from mmcv.runner import force_fp32

from mmdet.core import (anchor_inside_flags, build_anchor_generator,
                        build_assigner, build_bbox_coder, build_sampler,
                        images_to_levels, multi_apply, multiclass_nms, unmap)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin


@HEADS.register_module()
class AnchorHead(BaseDenseHead, BBoxTestMixin):
    """Anchor-based head (RPN, RetinaNet, SSD, etc.).

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels. Used in child classes.
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Default False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
    """  # noqa: W605

    def __init__(self,
                 num_classes,
                 in_channels,
                 feat_channels=256,
                 anchor_generator=dict(
                     type='AnchorGenerator',
                     scales=[8, 16, 32],
                     ratios=[0.5, 1.0, 2.0],
                     strides=[4, 8, 16, 32, 64]),
                 bbox_coder=dict(
                     type='DeltaXYWHBBoxCoder',
                     clip_border=True,
                     target_means=(.0, .0, .0, .0),
                     target_stds=(1.0, 1.0, 1.0, 1.0)),
                 reg_decoded_bbox=False,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
                 train_cfg=None,
                 test_cfg=None):
        super(AnchorHead, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.feat_channels = feat_channels
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        # TODO better way to determine whether sample or not
        self.sampling = loss_cls['type'] not in [
            'FocalLoss', 'GHMC', 'QualityFocalLoss'
        ]
        if self.use_sigmoid_cls:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1

        if self.cls_out_channels <= 0:
            raise ValueError(f'num_classes={num_classes} is too small')
        self.reg_decoded_bbox = reg_decoded_bbox

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        if self.train_cfg:
            self.assigner = build_assigner(self.train_cfg.assigner)
            # use PseudoSampler when sampling is False
            if self.sampling and hasattr(self.train_cfg, 'sampler'):
                sampler_cfg = self.train_cfg.sampler
            else:
                sampler_cfg = dict(type='PseudoSampler')
            self.sampler = build_sampler(sampler_cfg, context=self)
        self.fp16_enabled = False

        self.anchor_generator = build_anchor_generator(anchor_generator)
        # usually the numbers of anchors for each level are the same
        # except SSD detectors
        self.num_anchors = self.anchor_generator.num_base_anchors[0]
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the head."""
        self.conv_cls = nn.Conv2d(self.in_channels,
                                  self.num_anchors * self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.in_channels, self.num_anchors * 4, 1)

    def init_weights(self):
        """Initialize weights of the head."""
        normal_init(self.conv_cls, std=0.01)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
        """Forward feature of a single scale level.

        Args:
            x (Tensor): Features of a single scale level.

        Returns:
            tuple:
                cls_score (Tensor): Cls scores for a single scale level \
                    the channels number is num_anchors * num_classes.
                bbox_pred (Tensor): Box energies / deltas for a single scale \
                    level, the channels number is num_anchors * 4.
        """
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        return cls_score, bbox_pred

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: A tuple of classification scores and bbox prediction.

                - cls_scores (list[Tensor]): Classification scores for all \
                    scale levels, each is a 4D-tensor, the channels number \
                    is num_anchors * num_classes.
                - bbox_preds (list[Tensor]): Box energies / deltas for all \
                    scale levels, each is a 4D-tensor, the channels number \
                    is num_anchors * 4.
        """
        return multi_apply(self.forward_single, feats)

    def get_anchors(self, featmap_sizes, img_metas, device='cuda'):
        """Get anchors according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            img_metas (list[dict]): Image meta info.
            device (torch.device | str): Device for returned tensors

        Returns:
            tuple:
                anchor_list (list[Tensor]): Anchors of each image.
                valid_flag_list (list[Tensor]): Valid flags of each image.
        """
        num_imgs = len(img_metas)

        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device)
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]

        # for each image, we compute valid flags of multi level anchors
        valid_flag_list = []
        for img_id, img_meta in enumerate(img_metas):
            multi_level_flags = self.anchor_generator.valid_flags(
                featmap_sizes, img_meta['pad_shape'], device)
            valid_flag_list.append(multi_level_flags)

        return anchor_list, valid_flag_list

    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors ,4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            gt_bboxes (Tensor): Ground truth bboxes of the image,
                shape (num_gts, 4).
            gt_bboxes_ignore (Tensor): Ground truth bboxes to be
                ignored, shape (num_ignored_gts, 4).
            img_meta (dict): Meta info of the image.
            gt_labels (Tensor): Ground truth labels of each box,
                shape (num_gts,).
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple:
                labels_list (list[Tensor]): Labels of each level
                label_weights_list (list[Tensor]): Label weights of each level
                bbox_targets_list (list[Tensor]): BBox targets of each level
                bbox_weights_list (list[Tensor]): BBox weights of each level
                num_total_pos (int): Number of positive samples in all images
                num_total_neg (int): Number of negative samples in all images
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None, ) * 7
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]

        assign_result = self.assigner.assign(
            anchors, gt_bboxes, gt_bboxes_ignore,
            None if self.sampling else gt_labels)
        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class since v2.5.0
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(
                labels, num_total_anchors, inside_flags,
                fill=self.num_classes)  # fill bg label
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result)

    def get_targets(self,
                    anchor_list,
                    valid_flag_list,
                    gt_bboxes_list,
                    img_metas,
                    gt_bboxes_ignore_list=None,
                    gt_labels_list=None,
                    label_channels=1,
                    unmap_outputs=True,
                    return_sampling_results=False):
        """Compute regression and classification targets for anchors in
        multiple images.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, 4).
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            img_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
                ignored.
            gt_labels_list (list[Tensor]): Ground truth labels of each box.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each \
                    level.
                - bbox_targets_list (list[Tensor]): BBox targets of each level.
                - bbox_weights_list (list[Tensor]): BBox weights of each level.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end
        """
        num_imgs = len(img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors to a single tensor
        concat_anchor_list = []
        concat_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            concat_anchor_list.append(torch.cat(anchor_list[i]))
            concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]
        results = multi_apply(
            self._get_targets_single,
            concat_anchor_list,
            concat_valid_flag_list,
            gt_bboxes_list,
            gt_bboxes_ignore_list,
            gt_labels_list,
            img_metas,
            label_channels=label_channels,
            unmap_outputs=unmap_outputs)
        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         pos_inds_list, neg_inds_list, sampling_results_list) = results[:7]
        rest_results = list(results[7:])  # user-added return values
        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        res = (labels_list, label_weights_list, bbox_targets_list,
               bbox_weights_list, num_total_pos, num_total_neg)
        if return_sampling_results:
            res = res + (sampling_results_list, )
        for i, r in enumerate(rest_results):  # user-added return values
            rest_results[i] = images_to_levels(r, num_level_anchors)

        return res + tuple(rest_results)

    def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights,
                    bbox_targets, bbox_weights, num_total_samples):
        """Compute loss of a single scale level.

        Args:
            cls_score (Tensor): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W).
            bbox_pred (Tensor): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            anchors (Tensor): Box reference for each scale level with shape
                (N, num_total_anchors, 4).
            labels (Tensor): Labels of each anchors with shape
                (N, num_total_anchors).
            label_weights (Tensor): Label weights of each anchor with shape
                (N, num_total_anchors)
            bbox_targets (Tensor): BBox regression targets of each anchor wight
                shape (N, num_total_anchors, 4).
            bbox_weights (Tensor): BBox regression loss weights of each anchor
                with shape (N, num_total_anchors, 4).
            num_total_samples (int): If sampling, num total samples equal to
                the number of total anchors; Otherwise, it is the number of
                positive anchors.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        # classification loss
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)
        # regression loss
        bbox_targets = bbox_targets.reshape(-1, 4)
        bbox_weights = bbox_weights.reshape(-1, 4)
        bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            anchors = anchors.reshape(-1, 4)
            bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)
        return loss_cls, loss_bbox

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss. Default: None

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=label_channels)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors and flags to a single tensor
        concat_anchor_list = []
        for i in range(len(anchor_list)):
            concat_anchor_list.append(torch.cat(anchor_list[i]))
        all_anchor_list = images_to_levels(concat_anchor_list,
                                           num_level_anchors)

        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            all_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples)
        return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   img_metas,
                   cfg=None,
                   rescale=False,
                   with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each level in the
                feature pyramid, has shape
                (N, num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each
                level in the feature pyramid, has shape
                (N, num_anchors * 4, H, W).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cfg (mmcv.Config | None): Test / postprocessing configuration,
                if None, test_cfg would be used
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where 5 represent
                (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
                The shape of the second tensor in the tuple is (n,), and
                each element represents the class label of the corresponding
                box.

        Example:
            >>> import mmcv
            >>> self = AnchorHead(
            >>>     num_classes=9,
            >>>     in_channels=1,
            >>>     anchor_generator=dict(
            >>>         type='AnchorGenerator',
            >>>         scales=[8],
            >>>         ratios=[0.5, 1.0, 2.0],
            >>>         strides=[4,]))
            >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}]
            >>> cfg = mmcv.Config(dict(
            >>>     score_thr=0.00,
            >>>     nms=dict(type='nms', iou_thr=1.0),
            >>>     max_per_img=10))
            >>> feat = torch.rand(1, 1, 3, 3)
            >>> cls_score, bbox_pred = self.forward_single(feat)
            >>> # note the input lists are over different levels, not images
            >>> cls_scores, bbox_preds = [cls_score], [bbox_pred]
            >>> result_list = self.get_bboxes(cls_scores, bbox_preds,
            >>>                               img_metas, cfg)
            >>> det_bboxes, det_labels = result_list[0]
            >>> assert len(result_list) == 1
            >>> assert det_bboxes.shape[1] == 5
            >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img
        """
        assert len(cls_scores) == len(bbox_preds)
        num_levels = len(cls_scores)

        device = cls_scores[0].device
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        mlvl_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)

        mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)]
        mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)]

        if torch.onnx.is_in_onnx_export():
            assert len(
                img_metas
            ) == 1, 'Only support one input image while in exporting to ONNX'
            img_shapes = img_metas[0]['img_shape_for_onnx']
        else:
            img_shapes = [
                img_metas[i]['img_shape']
                for i in range(cls_scores[0].shape[0])
            ]
        scale_factors = [
            img_metas[i]['scale_factor'] for i in range(cls_scores[0].shape[0])
        ]

        if with_nms:
            # some heads don't support with_nms argument
            result_list = self._get_bboxes(mlvl_cls_scores, mlvl_bbox_preds,
                                           mlvl_anchors, img_shapes,
                                           scale_factors, cfg, rescale)
        else:
            result_list = self._get_bboxes(mlvl_cls_scores, mlvl_bbox_preds,
                                           mlvl_anchors, img_shapes,
                                           scale_factors, cfg, rescale,
                                           with_nms)
        return result_list

    def _get_bboxes(self,
                    mlvl_cls_scores,
                    mlvl_bbox_preds,
                    mlvl_anchors,
                    img_shapes,
                    scale_factors,
                    cfg,
                    rescale=False,
                    with_nms=True):
        """Transform outputs for a batch item into bbox predictions.

        Args:
            mlvl_cls_scores (list[Tensor]): Each element in the list is
                the scores of bboxes of single level in the feature pyramid,
                has shape (N, num_anchors * num_classes, H, W).
            mlvl_bbox_preds (list[Tensor]):  Each element in the list is the
                bboxes predictions of single level in the feature pyramid,
                has shape (N, num_anchors * 4, H, W).
            mlvl_anchors (list[Tensor]): Each element in the list is
                the anchors of single level in feature pyramid, has shape
                (num_anchors, 4).
            img_shapes (list[tuple[int]]): Each tuple in the list represent
                the shape(height, width, 3) of single image in the batch.
            scale_factors (list[ndarray]): Scale factor of the batch
                image arange as list[(w_scale, h_scale, w_scale, h_scale)].
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where 5 represent
                (tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
                The shape of the second tensor in the tuple is (n,), and
                each element represents the class label of the corresponding
                box.
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(mlvl_cls_scores) == len(mlvl_bbox_preds) == len(
            mlvl_anchors)
        batch_size = mlvl_cls_scores[0].shape[0]
        # convert to tensor to keep tracing
        nms_pre_tensor = torch.tensor(
            cfg.get('nms_pre', -1),
            device=mlvl_cls_scores[0].device,
            dtype=torch.long)

        mlvl_bboxes = []
        mlvl_scores = []
        for cls_score, bbox_pred, anchors in zip(mlvl_cls_scores,
                                                 mlvl_bbox_preds,
                                                 mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            cls_score = cls_score.permute(0, 2, 3,
                                          1).reshape(batch_size, -1,
                                                     self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(0, 2, 3,
                                          1).reshape(batch_size, -1, 4)
            anchors = anchors.expand_as(bbox_pred)
            # Always keep topk op for dynamic input in onnx
            if nms_pre_tensor > 0 and (torch.onnx.is_in_onnx_export()
                                       or scores.shape[-2] > nms_pre_tensor):
                from torch import _shape_as_tensor
                # keep shape as tensor and get k
                num_anchor = _shape_as_tensor(scores)[-2].to(
                    nms_pre_tensor.device)
                nms_pre = torch.where(nms_pre_tensor < num_anchor,
                                      nms_pre_tensor, num_anchor)

                # Get maximum scores for foreground classes.
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(-1)
                else:
                    # remind that we set FG labels to [0, num_class-1]
                    # since mmdet v2.0
                    # BG cat_id: num_class
                    max_scores, _ = scores[..., :-1].max(-1)

                _, topk_inds = max_scores.topk(nms_pre)
                batch_inds = torch.arange(batch_size).view(
                    -1, 1).expand_as(topk_inds)
                anchors = anchors[batch_inds, topk_inds, :]
                bbox_pred = bbox_pred[batch_inds, topk_inds, :]
                scores = scores[batch_inds, topk_inds, :]

            bboxes = self.bbox_coder.decode(
                anchors, bbox_pred, max_shape=img_shapes)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)

        batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1)
        if rescale:
            batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor(
                scale_factors).unsqueeze(1)
        batch_mlvl_scores = torch.cat(mlvl_scores, dim=1)

        # Set max number of box to be feed into nms in deployment
        deploy_nms_pre = cfg.get('deploy_nms_pre', -1)
        if deploy_nms_pre > 0 and torch.onnx.is_in_onnx_export():
            # Get maximum scores for foreground classes.
            if self.use_sigmoid_cls:
                max_scores, _ = batch_mlvl_scores.max(-1)
            else:
                # remind that we set FG labels to [0, num_class-1]
                # since mmdet v2.0
                # BG cat_id: num_class
                max_scores, _ = batch_mlvl_scores[..., :-1].max(-1)
            _, topk_inds = max_scores.topk(deploy_nms_pre)
            batch_inds = torch.arange(batch_size).view(-1,
                                                       1).expand_as(topk_inds)
            batch_mlvl_scores = batch_mlvl_scores[batch_inds, topk_inds]
            batch_mlvl_bboxes = batch_mlvl_bboxes[batch_inds, topk_inds]
        if self.use_sigmoid_cls:
            # Add a dummy background class to the backend when using sigmoid
            # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
            # BG cat_id: num_class
            padding = batch_mlvl_scores.new_zeros(batch_size,
                                                  batch_mlvl_scores.shape[1],
                                                  1)
            batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1)

        if with_nms:
            det_results = []
            for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes,
                                                  batch_mlvl_scores):
                det_bbox, det_label = multiclass_nms(mlvl_bboxes, mlvl_scores,
                                                     cfg.score_thr, cfg.nms,
                                                     cfg.max_per_img)
                det_results.append(tuple([det_bbox, det_label]))
        else:
            det_results = [
                tuple(mlvl_bs)
                for mlvl_bs in zip(batch_mlvl_bboxes, batch_mlvl_scores)
            ]
        return det_results

    def aug_test(self, feats, img_metas, rescale=False):
        """Test function with test time augmentation.

        Args:
            feats (list[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains features for all images in the batch.
            img_metas (list[list[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch. each dict has image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[ndarray]: bbox results of each class
        """
        return self.aug_test_bboxes(feats, img_metas, rescale=rescale)